Abstract:
The embodiment described herein are related nanoemulsions comprising botulinum toxins. In one embodiment, the nanoemulsions are prepared by high pressure microfluidization and comprise a particle size distribution exclusively between 10 and 300 nm. The nanoemulsions contemplated by the present invention are useful for the cosmetic and medical treatment of muscular contracture states. For example, botulinum toxin may relax facial muscles such that skin wrinkles become smoother and less noticeable. Further, the present invention contemplates a cosmetic formulation that may be self-administered, for example, in the privacy of one's home and without medical supervision.
Abstract:
The invention relates to new amphiphilic linear block copolymers of polysaccharides and polymers. The amphiphilic linear block copolymers do not form a true solution in water and are able to form micelles in selective solvents. Also disclosed are particles, each of which has a shell and a core, and a diameter of about 1 to 1,000 nanometers, and methods of delivering agents or removing substances, e.g., undesirable substances, from a subject or environment, by using these particles.
Abstract:
The invention relates to new amphiphilic linear block copolymers of polysaccharides and polymers. The amphiphilic linear block copolymers do not form a true solution in water and are able to form micelles in selective solvents. Also disclosed are particles, each of which has a shell and a core, and a diameter of about 1 to 1,000 nanometers, and methods of delivering agents or removing substances, e.g., undesirable substances, from a subject or environment, by using these particles.
Abstract:
An oil extractable from corn fiber contains ferulate esters, in particular sitostanyl ester, which has been shown to have cholesterol-lowering activity. The oil is extracted by a novel process which includes a grinding step carried out before extraction with an effective organic solvent such as hexane. The corn fiber oil may be combined with an ingestible and/or edible carrier for administration as a dietary supplement for cholesterol-lowering purposes.
Abstract:
A uniform microfluidized nanoemulsion is disclosed containing an anti-cancer agent, such as dacarbazine. The microfluidized nanoemulsion improves the combination's cell membrane permeability by at least four-fold over conventional nanoemulsion compositions, which significantly increases the intracellular concentration of anticancer agents. As a nanoemulsion, dacarbazine has a greater anti-cancer efficacy than when applied as a free solution.
Abstract:
Nutriceutical and pharmaceutical formulations for treating neurodegenerative disorders such as Alzheimer's disease are provided. Nutriceutical formulations include two or more of folate, vitamin E, and acetyl-L-carnitine (ALCAR). Pharmaceutical formulations include two or more of 3-deaza-adenosine (DZA), N-acetyl-L-cysteine (NAC), and S-adenosylmethionine (SAM).
Abstract:
The invention relates to new amphiphilic linear block copolymers of polysaccharides and polymers. The amphiphilic linear block copolymers do not form a true solution in water and are able to form micelles in selective solvents. Also disclosed are particles, each of which has a shell and a core, and a diameter of about 1 to 1,000 nanometers, and methods of delivering agents or removing substances, e.g., undesirable substances, from a subject or environment, by using these particles.
Abstract:
Nutriceutical and pharmaceutical formulations for treating neurodegenerative disorders such as Alzheimer's disease are provided. Nutriceutical formulations include two or more of folate, vitamin E, and acetyl-L-carnitine (ALCAR). Pharmaceutical formulations include two or more of 3-deaza-adenosine (DZA), N-acetyl-L-cysteine (NAC), and S-adenosylmethionine (SAM).
Abstract:
The disclosure relates to compositions and methods of forming nanoemulsions, e.g., containing an active component, in combination with lipophilic components such as oils, hydrophilic components such as water, and one or more surfactants capable of causing a temperature-dependent phase inversion, such as a nonionic polyethoxylated surfactant. Nanoemulsions containing the active component can be produced having average oil droplet sizes of less than 100 nm, 50 nm, or 25 nm without the need for high energy emulsion forming methods (such as microfluidization) by combining the surfactant and the oil in specified weight ratios (e.g., at least 3:1) prior to forming the nanoemulsion.
Abstract:
The invention relates to new amphiphilic linear block copolymers of polysaccharides and polymers. The amphiphilic linear block copolymers do not form a true solution in water and are able to form micelles in selective solvents. Also disclosed are particles, each of which has a shell and a core, and a diameter of about 1 to 1,000 nanometers, and methods of delivering agents or removing substances, e.g., undesirable substances, from a subject or environment, by using these particles.