Abstract:
In accordance with one aspect of the invention, novel compositions containing injectable particles are provided in which the injectable particles contain at least two polymeric components that differ in composition from one another (e.g., because at least one polymeric component contains a polymer that is not present in another polymeric component).
Abstract:
The present invention relates to medical devices which contain isobutylene copolymers. The present invention also relates to biocompatible copolymer materials for therapeutic agent delivery comprising a therapeutic-agent-loaded isobutylene copolymer. According to an aspect of the present invention, a medical device is provided, which includes: (a) a substrate and (b) at least one polymeric layer, which contains a copolymer, disposed over all or a portion of the substrate. The copolymer contains one or more polymer chains, within which isobutylene and elevated Tg monomers (and, optionally, other monomers) are incorporated in a random, periodic, statistical or gradient distribution.
Abstract:
According to an aspect of the present invention, implantable or insertable medical devices are provided, which contain one or more polymeric regions. These polymeric regions, in turn, contain one or more polymers, at least one of which is a copolymer that includes the following: (a) one or more unsaturated hydrocarbon monomer species and (b) one or more heteroatom-containing monomer species.
Abstract:
The present invention provides a method for the formation of a medical device that comprises a therapeutic agent and a release region, which regulates the rate at which the therapeutic agent is released from the medical device. The method comprises providing a precursor region that comprises a polymer composition comprising two or more microphase separated polymer domains that are immiscible with one another, and forming said release region by a process that comprises applying an orienting field comprising an electric field, a magnetic field, a mechanical shear field, or a solvent gradient field, or a combination of two or more fields to said precursor region, wherein said field or combination of fields changes the spatial orientation of the microphase separated polymer domains within the release region. The electric, magnetic, mechanical shear or solvent gradient field is of sufficient strength to change the spatial orientation of the microphase separated domains. Moreover, the spatial orientation of the immiscible microphase separated polymer domains affects the rate of release of the therapeutic agent from the medical device. Hence, the present invention is further directed to methods of modulating the rate of release of a therapeutic agent from a medical device. Other aspects of the invention are directed to medical devices formed from the above techniques.
Abstract:
A method is provided for modulating the rate of release of a therapeutic agent from a release region, which constitutes at least a portion of an implantable or insertable medical device and which controls the rate at which the therapeutic is released from the medical device. The method comprises: (a) providing a release region that comprises (i) a therapeutic agent and (ii) polymer composition comprising two or more immiscible phases; and (b) modulating the rate of release of the therapeutic agent by changing the volume that is occupied by at least one of the immiscible polymer phases relative to the total volume of the release region that is formed. The release region can be, for example, a carrier layer, which comprises the therapeutic agent, or a barrier layer, which is disposed over a region that contains the therapeutic agent. In preferred embodiments, the release region is formed by a process comprising: (a) providing a solution comprising (i) a solvent and (ii) the polymer composition; and (b) forming the release region from the solution by removing the solvent from the solution.
Abstract:
Disclosed herein are methods that include providing a first particle having pores, the first particle having a first compression test value, and partially cross-linking the first particle to form a second particle having pores, the second particle having a second compression test value that is larger than the first compression test value by 25% or more, where a maximum dimension of the first particle is 5,000 microns or less, and a maximum dimension of the second particle is 5,000 microns or less.
Abstract:
In accordance with one aspect of the invention, injectable particles are provided which comprise (a) a first group of injectable particles comprising first polymeric particles loaded with a first therapeutic agent and (b) a second group of injectable particles comprising second polymeric particles loaded with a second therapeutic agent. The first and second polymeric particles may be the same or different, and the first and second therapeutic agents may be the same or different. Other aspects of the invention pertain to methods of making such particles, to kits that comprise such particles, and to methods of treatment that employ such injectable particles.
Abstract:
The present invention is generally directed to medical devices, and more specifically to medical devices that are at least partially insertable or implantable into the body of a patient. The medical devices generally comprise (a) a therapeutic agent, more typically, a high-molecular-weight therapeutic agent, and (b) at least one polymeric layer, which typically acts to control the release of the therapeutic agent from the medical device. Also disclosed herein are methods of making such medical devices.
Abstract:
In accordance with one aspect of the invention, injectable compositions are provided, which contain temperature-sensitive hydrogel particles. The hydrogel particles may be provided in dry form, or they may be provided in hydrated form in an aqueous fluid. The temperature-sensitive hydrogel particles may have an upper critical solution temperature (UCST) below normal body temperature, they may have a lower critical solution temperature (LCST) above normal body temperature, or they may have a LCST that changes from below normal body temperature to above normal body temperature after injection into a subject.
Abstract:
The present invention is generally directed to medical devices, and more specifically to medical devices that are at least partially insertable or implantable into the body of a patient. The medical devices generally comprise (a) a therapeutic agent, more typically, a high-molecular-weight therapeutic agent, and (b) at least one polymeric layer, which typically acts to control the release of the therapeutic agent from the medical device. Also disclosed herein are methods of making such medical devices.