摘要:
A system and method for performing tangent space lighting in a deferred shading graphics processor (DSGP) encompasses blocks of the DSGP that preprocess data and a Phong shader that executes only after all fragments have been preprocessed. A preprocessor block receives texture maps specified in a variety of formats and converts those texture maps to a common format for use by the Phong shader. The preprocessor blocks provide the Phong shader with interpolated surface basis vectors (vs, vt, n), a vector Tb that represents in tangen/object space the texture/bump data from the texture maps, light data, material data, eye coordinates and other information used by the Phong shader to perform the lighting and bump mapping computations. The data from the preprocessor is provided for each fragment for which lighting effects need to be computed. The Phong shader computes the color of a fragment using the information provided by the preprocessor. The Phong shader performs all lighting computations in eye space, which requires it first to transform bump data from tangent space to eye space. In one embodiment the Phong hardware does this by multiplying a matrix M whose columns comprise eye space basis vectors (bs, bt, n) derived from the surface basis vectors (vs, vt, n) and the vector Tb of bump map data. The eye space basis vectors are derived by the DSGP preprocessor so that the multiplication (M×Tb) gives the perturbed surface normal N′ in eye space, reflecting the bump effects. The perturbed surface normal N′ is subsequently used in the lighting computations.
摘要:
Structure, apparatus, and method for performing conservative hidden surface removal in a graphics processor. Culling is divided into two steps, a magnitude comparison content addressable memory cull operation (MCCAM Cull), and a subpixel cull operation. The MCCAM Cull discards primitives that are hidden completely by previously processed geometry. The Subpixel Cull takes the remaining primitives (which are partly or entirely visible), and determines the visible fragments. In one embodiment the method of performing hidden surface removal includes: selecting a current primitive comprising a plurality of stamps; comparing stamps to stamps from previously evaluated primitives; selecting a first stamp as a currently potentially visible stamp (CPVS) based on a relationship of depth states of samples in the first stamp with depth states of samples of previously evaluated stamps; comparing the CPVS to a second stamp; discarding the second stamp when no part of the second stamp would affect a final graphics display image based on the stamps that have been evaluated; discarding the CPVS and making the second stamp the CPVS, when the second stamp hides the CPVS; dispatching the CPVS and making the second stamp the CPVS when both the second stamp and the CPVS are at least partially visible in the final graphics display image; and dispatching the second stamp and the CPVS when the visibility of the second stamp and the CPVS depends on parameters evaluated later in the computer graphics pipeline.
摘要:
A deferred graphics pipeline processor comprised of a mode extraction unit and a Polygon Memory associated with the polygon unit. The mode extraction unit receives a data stream from a geometry unit and separates the data stream into vertices data, and non-vertices data which is sent to the Polygon Memory for storage. A mode injection unit receives inputs from the Polygon Memory and communicates the mode information to one or more other processing units. The mode injection unit maintains status information identifying the information that is already cached and not sending information that is already cached, thereby reducing communication bandwidth.
摘要:
Structure, apparatus, and method for performing conservative hidden surface removal in a graphics processor. Culling is divided into two steps, a magnitude comparison content addressable memory cull operation (MCCAM Cull), and a subpixel cull operation. The MCCAM Cull discards primitives that are hidden completely by previously processed geometry. The Subpixel Cull takes the remaining primitives (which are partly or entirely visible), and determines the visible fragments. In one embodiment the method of performing hidden surface removal includes: selecting a current primitive comprising a plurality of stamps; comparing stamps to stamps from previously evaluated primitives; selecting a first stamp as a currently potentially visible stamp (CPVS) based on a relationship of depth states of samples in the first stamp with depth states of samples of previously evaluated stamps; comparing the CPVS to a second stamp; discarding the second stamp when no part of the second stamp would affect a final graphics display image based on the stamps that have been evaluated; discarding the CPVS and making the second stamp the CPVS, when the second stamp hides the CPVS; dispatching the CPVS and making the second stamp the CPVS when both the second stamp and the CPVS are at least partially visible in the final graphics display image; and dispatching the second stamp and the CPVS when the visibility of the second stamp and the CPVS depends on parameters evaluated later in the computer graphics pipeline.
摘要:
Three-dimensional computer graphics systems and methods and more particularly to structure and method for a three-dimensional graphics processor and having other enhanced graphics processing features. In one embodiment the graphics processor is a Deferred Shading Graphics Processor (DSGP) comprising an AGP interface, a command fetch & decode (2000), a geometry unit (3000), a mode extraction (4000) and polygon memory (5000), a sort unit (6000) and sort memory (7000), a setup unit (8000), a cull unit (9000), a mode injection (10000), a fragment unit (11000), a texture (12000) and texture memory (13000) a phong shading (14000), a pixel unit (15000), a backend unit (1600) coupled to a frame buffer (17000). Other embodiments need not include all of these functional units, and the structures and methods of these units are applicable to other computational processes and systems as well as deferred and non-deferred shading graphical processors.
摘要:
The present invention provides a method and apparatus for handling memory hazards in processors having multiple memory ports wherein the operation of marking of the memory requests that may be related to a memory hazard is separated from the operation of waiting for the memory hazard to clear. The separation of the operation of marking of memory hazards from the operation of waiting for memory hazards to clear allows a compiler to schedule other instructions, as well as other memory operations not directed to the memory location involved in the memory hazard sequence, during the time between the operations of marking and waiting for the memory hazard to clear. The waiting period ends once it is clear that the marked memory requests will execute in the order in which they were issued.
摘要:
Global registers for a multiprocessor system support multiple parallel access paths for simultaneous operations on separate sets of global registers, each set of global registers referred to as a global register file. An arbitration mechanism associated with the global registers is used for resolving multiple, simultaneous requests to a single global register file. An arithmetic and logical unit (ALU) is also associated with each global register file for allowing atomic arithmetic operations to be performed on the entire register value for any of the global registers in that global register file.
摘要:
A deferred shading graphics pipeline processor and method are provided encompassing numerous substructures. Embodiments of the processor and method may include one or more of deferred shading, a tiled frame buffer, and multiple?stage hidden surface removal processing. In the deferred shading graphics pipeline, hidden surface removal is completed before pixel coloring is done. The pipeline processor comprises a command fetch and decode unit, a geometry unit, a mode extraction unit, a sort unit, a setup unit, a cull unit, a mode injection unit, a fragment unit, a texture unit, a Phong lighting unit, a pixel unit, and a backend unit.
摘要:
A deferred shading graphics pipeline processor and method are provided encompassing numerous substructures. Embodiments of the processor and method may include one or more of deferred shading, a tiled frame buffer, and multiple-stage hidden surface removal processing. In the deferred shading graphics pipeline, hidden surface removal is completed before pixel coloring is done. The pipeline processor comprises a command fetch and decode unit, a geometry unit, a mode extraction unit, a sort unit, a setup unit, a cull unit, a mode injection unit, a fragment unit, a texture unit, a Phong lighting unit, a pixel unit, and a backend unit.
摘要:
Apparatus and methods for rendering 3D graphics images. The apparatus include a port for receiving commands from a graphics application, an output for sending a rendered image to a display and a fragment-operations pipeline, coupled to the port and to the output, the pipeline including a stage for performing a fragment operation on a fragment on a per-pixel basis, as well as a stage for performing a fragment operation on the fragment on a per-sample basis. The stage for performing on a per-pixel basis is one of the following: a scissor-test stage, a stipple-test stage, an alpha-test stage or a colorest stage, and the stage for performing on a per-sample basis is one of the following: a Z-test stage, a blending stage or a dithering stage. The apparatus programmatically selects whether to perform a stencil test on a per-pixel or a per-sample basis and performs the stencil test on the selected basis. The apparatus also programmatically selects pixel samples for per-sample operations, where the sample selections differ with different instances of the same per-sample operation. The apparatus also programmatically selects a set of subdivisions of a pixel as samples for use in the per-sample fragment operation, programmatically assigns different weights to at least two samples in the set and performs the per-sample fragments operation on the fragment using the programmatically selected and differently weighted samples.