Abstract:
A process for forming a conductive contact having a flat interface. A layer containing niobium and titanium is deposited on a silicon substrate and the resulting structure is annealed in a nitrogen-containing atmosphere at about 500° C. to about 700° C. By this process, a flatter interface between silicide and silicon, which is less likely to cause junction leakage, is formed on annealing. The step of annealing also produces a more uniform bilayer, which is a better barrier against tungsten encroachment during subsequent tungsten deposition. Larger silicide grains are also formed so that fewer grain boundaries are produced, reducing metal diffusion in grain boundaries. The process can be used to form contacts for very small devices and shallow junctions, such as are required for current and future semiconductor devices.
Abstract:
A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.
Abstract:
A process for forming a conductive contact having a flat interface. A layer containing niobium and titanium is deposited on a silicon substrate and the resulting structure is annealed in a nitrogen-containing atmosphere at about 500° C. to about 700° C. By this process, a flatter interface between silicide and silicon, which is less likely to cause junction leakage, is formed on annealing. The step of annealing also produces a more uniform bilayer, which is a better barrier against tungsten encroachment during subsequent tungsten deposition. Larger silicide grains are also formed so that fewer grain boundaries are produced, reducing metal diffusion in grain boundaries. The process can be used to form contacts for very small devices and shallow junctions, such as are required for current and future semiconductor devices.
Abstract:
A method and apparatus are provided for forming a silicide on a semiconductor substrate by integrating under a constant vacuum the processes of removing an oxide from a surface of a semiconductor substrate and depositing a metal on the cleaned surface without exposing the cleaned surface to air. The method and apparatus of the present invention eliminates the exposure of the cleaned substrate to air between the oxide removal and metal deposition steps. This in-situ cleaning of the silicon substrate prior to cobalt deposition provides a cleaner silicon substrate surface, resulting in enhanced formation of cobalt silicide when the cobalt layer is annealed.
Abstract:
A method and apparatus are provided for forming a silicide on a semiconductor substrate by integrating under a constant vacuum the processes of removing an oxide from a surface of a semiconductor substrate and depositing a metal on the cleaned surface without exposing the cleaned surface to air. The method and apparatus of the present invention eliminates the exposure of the cleaned substrate to air between the oxide removal and metal deposition steps. This in-situ cleaning of the silicon substrate prior to cobalt deposition provides a cleaner silicon substrate surface, resulting in enhanced formation of cobalt silicide when the cobalt layer is annealed.
Abstract:
A method of forming a semiconductor device having aluminum lines therein, wherein the occurrence of lateral extrusions and voids are reduced. The method comprises the formation of a metal stack on a surface of the substrate, wherein the aluminum layer of the metal stack is deposited under controlled conditions; etching the metal lines in the metal stack; and exposing the substrate to a subsequent anneal.
Abstract:
A method and apparatus are provided for forming cobalt on a silicon substrate containing native silicon oxide on the surface thereof wherein a modified vapor sputtering device is used. The vapor sputtering device is modified by providing an electrical circuit to ground whereby the wafer disposed in the device is electrically connected to the ground circuit. The ground circuit preferably contains a resistor therein to control wafer voltage and current flow from the wafer to ground. It has been found that providing a current flow from the wafer to ground and particularly in a ground circuit containing a resistor, provides an in-situ simultaneous cleaning of native oxide on the silicon surface and deposition of cobalt on cleaned silicon. The deposited cobalt containing substrate may then be readily annealed to form cobalt silicide evenly and uniformly across the desired regions of the wafer surface. A cobalt coated silicon substrate and an annealed cobalt silicide coated silicon substrate made using the method and apparatus of the invention are also provided as well as electronic components made using the cobalt coated silicon substrate.