Abstract:
A sealed passage is formed in a part of refractory composite material by inserting a tubular metal lining in a hole in the part, brazing material being interposed between the lining and the hole, and by heating to braze the metal lining to the wall of the hole, so that the metal lining defines a sealed passage (38). The metal lining (39) is plastically deformable under the conditions of use of the part such that differential expansion of thermal origin between the refractory composite material and the metal lining can be compensated by plastic deformation of the lining. The method is particularly applicable to providing thermal protection that is cooled by the flow of a cooling fluid, and that is suitable for a deflector in an electromagnetic confinement chamber for a plasma in an installation for controlled thermonuclear fusion, said protection being constituted by a plurality of elements (30) made of refractory composite material and having sealed internal passages (38) connected to pipework (40, 42) for feeding and removing a cooling fluid.
Abstract:
A sealed passage is formed in a part of refractory composite material by inserting a tubular metal lining in a hole in the part, brazing material being interposed between the lining and the hole, and by heating to braze the metal lining to the wall of the hole, so that the metal lining defines a sealed passage (38). The metal lining (39) is plastically deformable under the conditions of use of the part such that differential expansion of thermal origin between the refractory composite material and the metal lining can be compensated by plastic deformation of the lining. The method is particularly applicable to providing thermal protection that is cooled by the flow of a cooling fluid, and that is suitable for a deflector in an electromgnetic confinement chamber for a plasma in an installation for controlled thermonuclear fusion, said protection being constituted by a plurality of elements (30) made of refractory composite material and having sealed intel passages (38) connected to pipework (40, 42) for feeding and removing a cooling fluid.
Abstract:
A description is given of a document with a hologram as a security feature, in particular an identity card (12), consisting of a polycarbonate card body (10), which has a volume hologram label (2, 9) embedded therein. A description is additionally given of a method for producing the document, in which volume hologram labels (2) arranged on a carrier sheet are brought into contact with adhesive regions (4) on a thermoplastic sheet (5.1), the adhesive surfaces are cured and the carrier sheet is then removed. A second plastics sheet (5.2) is then adhesively bonded onto the first plastics sheet (5.1), bearing the hologram labels, using a second adhesive (7) in the region of the hologram labels (2) to form a two-layered sheet composite (6) which, finally, is laminated, together with further thermoplastic sheets, in a card-lamination press, under the action of pressure and temperature, to give a card body (10), individual identity cards (12) being punched out.
Abstract:
When coating a document surface (3) having relief-like information (1) carrying personal data, for example, with a monomer-containing liquid UV adhesive (4) across the entire surface and then laminating thereon a volume hologram (2), the varying adhesive thicknesses between the volume hologram and the document surface resulting from the relief cause differentiated swelling and thereby a differentiated color shift of the hologram. After the desired color shift is achieved, the UV adhesive (4) is completely cured. In this way, individual holographic information is obtained, which is located exactly above the relief-like information of the document. With this method, holographic overlays comprising personal data and a passport picture can be produced, and it is possible to link defined optical document information to the hologram in an accurately positioned manner, so that information is visible both non-diffractively and, from a different viewing angle, holographically in a different color.
Abstract:
A description is given of a document with a hologram as a security feature, in particular an identity card (12), consisting of a polycarbonate card body (10), which has a volume hologram label (2, 9) embedded therein. A description is additionally given of a method for producing the document, in which volume hologram labels (2) arranged on a carrier sheet are brought into contact with adhesive regions (4) on a thermoplastic sheet (5.1), the adhesive surfaces are cured and the carrier sheet is then removed. A second plastics sheet (5.2) is then adhesively bonded onto the first plastics sheet (5.1), bearing the hologram labels, using a second adhesive (7) in the region of the hologram labels (2) to form a two-layered sheet composite (6) which, finally, is laminated, together with further thermoplastic sheets, in a card-lamination press, under the action of pressure and temperature, to give a card body (10), individual identity cards (12) being punched out.
Abstract:
When coating a document surface (3) having relief-like information (1) carrying personal data, for example, with a monomer-containing liquid UV adhesive (4) across the entire surface and then laminating thereon a volume hologram (2), the varying adhesive thicknesses between the volume hologram and the document surface resulting from the relief cause differentiated swelling and thereby a differentiated color shift of the hologram. After the desired color shift is achieved, the UV adhesive (4) is completely cured. In this way, individual holographic information is obtained, which is located exactly above the relief-like information of the document. With this method, holographic overlays comprising personal data and a passport picture can be produced, and it is possible to link defined optical document information to the hologram in an accurately positioned manner, so that information is visible both non-diffractively and, from a different viewing angle, holographically in a different color.
Abstract:
An active filter for compensation of polluting harmonics on an electricity distribution network comprising a source of energy (19, 20), a bridge converter (21) connected between the energy source and the network, control means which control the bridge converter in order to compensate for the polluting harmonics, characterized in that the state of the energy source (19, 20) is independant of the control of the bridge converter carried out by the control means (22) and in that the control means (22) control the injection of the harmonic components independantly of the state of the energy source.
Abstract:
A sealed passage is formed in a part of refractory composite material by inserting a tubular metal lining in a hole in the part, brazing material being interposed between the lining and the hole, and by heating to braze the metal lining to the wall of the hole, so that the metal lining defines a sealed passage (38). The metal lining (39) is plastically deformable under the conditions of use of the part such that differential expansion of thermal origin between the refractory composite material and the metal lining can be compensated by plastic deformation of the lining. The method is particularly applicable to providing thermal protection that is cooled by the flow of a cooling fluid, and that is suitable for a deflector in an electromagnetic confinement chamber for a plasma in an installation for controlled thermonuclear fusion, said protection being constituted by a plurality of elements (30) made of refractory composite material and having sealed internal passages (38) connected to pipework (40, 42) for feeding and removing a cooling fluid.
Abstract:
A wall modular member (1) for cultivating plants, is associated with at least one adjacent similar member (1′) for forming a vertical or inclined vegetal screen on a frame extending in a vertical or inclined plane. The modular member (1) includes at least: a bearing plate (2) that can be coupled with the frame; a gravity flow circulation vector for an aqueous nutriment solution for the plants in the form of a ply or sheet material (6) covering the bearing plate (2); and elements for retaining and/or attaching the plants to the member, in particular to the circulation vector. The vector-defining ply or sheet material (6) extends beyond at least one edge of the bearing plate (2) and defines with its portion protruding from the plate (2) edge a so-called partial-overlap connection strip (9, 10) with an adjacent and similar wall modular member (11).
Abstract:
A system for generating an electrical signal of energy equal to at least 0.5 joule for a time equal to 100 ns. This system comprises capacitor means of the discrete type for energy storage and adapted to be charged to a high voltage and a discharge circuit for said capacitor means comprising in series an electronic switch for controlling the discharge and energy transfer means comprising a first and second output terminals normally intended to be connected to the respective opposite terminals of a load. The energy transfer means comprise flat line means. The first and second metal coatings of these flat line means are connected respectively to the first and second output terminals.