Abstract:
A color image display device comprising arrays of structural color pixels, where said structural color pixels may be formed on a single substrate layer or multiple substrate layers and are patterned by selective material deposition to display a color image in accordance with input color images or patterns. The structural color pixels comprise a plurality of microstructures and/or nanostructures, including without limitation, diffraction gratings, sub-wavelength structures, to display colors in red, green, blue in RGB color space or cyan, magenta, yellow in CMY color space. Examples include methods of activating and/or deactivating structural pixels using selective material deposition onto at least one layer of the color display device to form a color image. Further examples include product labels, authentication devices and security documents carrying customized or personalized information and methods for their manufacture.
Abstract:
A main object of the present invention is to provide a method of producing a volume hologram laminate which can regenerate a hologram image in an arbitrary wavelength by a simple process. To attain the object, the present invention provides a method of producing a volume hologram laminate using a volume hologram forming substrate which comprises: a substrate, a volume hologram layer formed on the substrate and containing a photopolymerizable material, a resin layer, formed on the substrate so as to contact to the volume hologram layer, containing a resin and a polymerizable compound, characterized in that the producing method comprises processes of: a hologram recording process to record a volume hologram to the volume hologram layer, a substance transit process of transiting the polymerizable compound to the volume hologram layer, and an after-treatment process of polymerizing the polymerizable compound.
Abstract:
A method for producing a security element (55) and a security element (55) in the form of a multilayered film body having a top side facing the observer. The security element (55) has a volume hologram layer, in which a volume hologram is recorded, which provides a first optically variable information item. The security element (55) has a replication layer, in the surface of which a relief structure providing a second optically variable information item is molded and which is arranged above the volume hologram layer. A partial metallic layer is arranged between the volume hologram layer and the replication layer, wherein the metallic layer is provided in one or a plurality of first zones of the security element and the metallic layer is not provided in one or a plurality of second zones of the security element.
Abstract:
Tough decorative printable film products having holographic-type images are provided that are low in cost. These film products include a relatively high temperature film that is made by continuous extrusion of the film resin onto a master film having pre-etched holographic-type imaging in order to provide a high-temperature primary film with conforming holographic imaging. This primary film provides a tough holographic-type image that is readily secured to any number of products to impart a holographic character to them. For example, this primary film is suitable for use on the surface of recreational sportsboards. When desired, sublimation printing can be used to impart indicia, text, images and colors, alone or in combination, to the primary film.
Abstract:
A method for producing a security element (55) and a security element (55) in the form of a multilayered film body having a top side facing the observer. The security element (55) has a volume hologram layer, in which a volume hologram is recorded, which provides a first optically variable information item. The security element (55) has a replication layer, in the surface of which a relief structure providing a second optically variable information item is molded and which is arranged above the volume hologram layer. A partial metallic layer is arranged between the volume hologram layer and the replication layer, wherein the metallic layer is provided in one or a plurality of first zones of the security element and the metallic layer is not provided in one or a plurality of second zones of the security element.
Abstract:
Tough decorative printable film products having holographic-type images are provided that are low in cost. These film products include a relatively high temperature film that is made by continuous extrusion of the film resin onto a master film having pre-etched holographic-type imaging in order to provide a high-temperature primary film with conforming holographic imaging. This primary film provides a tough holographic-type image that is readily secured to any number of products to impart a holographic character to them. For example, this primary film is suitable for use on the surface of recreational sportsboards. When desired, sublimation printing can be used to impart indicia, text, images and colors, alone or in combination, to the primary film.
Abstract:
A metal identification platelet equipped with an identification code, while the identification code comprises a hologram. A method of producing the identification platelet with the identification code, including the following steps: A shield from an electro-insulation material is formed on a shim with a holographic motif. Then, the shim is galvanized in the places not covered by the shield from the electro-insulation material. And the completed metal identification platelets are removed from the shim.
Abstract:
This invention provides an improved and novel thin and pliable holographic fabric label that possesses durability, high intensity of holographic diffraction, laundering resistance, minimal alteration and degradation to the fabric and the label through extended use, and the ability to be cost-effectively mass produced is described. High bond is formed at multiple inter polymer interfaces and reflective diffractive layer is protected within the construction, superior durability to repetitious laundering, dry clean cycle and mechanical wear with long lasting diffracting effect and visual authentication property is realized.
Abstract:
A method of producing a film having a diffractive surface pattern in selected areas by processing a precursor film having a diffractive surface relief throughout one or more zones together defining a target area of the precursor film; the method comprising applying material to a selected zone of the diffractive surface relief so as to nullify the diffractive effect of the surface relief in the zone.
Abstract:
The invention relates to an authenticating medium that comprises a hologram which is used for authentication or other purposes thereby making more complicated appearance and ease of authentication unnecessary. The medium comprises a cholesteric liquid crystal layer (3) on an upper or lower surface of a transparent substrate (2), a hologram-formation layer (4) on a lower surface thereof, and reflective metal layers (5) along the fine relief of the hologram-formation layer (4). The reflective metal layers (5) are formed in a patterned form, as viewed from above, thereby obtaining an authenticating medium (1) capable of solving problems with the prior art. The cholesteric liquid crystal layer may be provided in a double-layer form, and may further have an adhesive layer (7) on the bottom.