Abstract:
A particle analyzer in which tagged particles to be analyzed are drawn through a suspended capillary tube where a predetermined volume in the capillary tube is illuminated. The illumination scattered by said particles is detected by a detector to count all particles. The fluorescent illumination emitted by tagged particles is detected and the output signals from the fluorescent detectors and scatter detector are processed to provide an analysis of the particles.
Abstract:
A particle analyzer in which tagged particles to be analyzed are drawn through a suspended capillary tube where a predetermined volume in the capillary tube is illuminated. The illumination scattered by said particles is detected by a detector to count all particles. The fluorescent illumination emitted by tagged particles is detected and the output signals from the fluorescent detectors and scatter detector are processed to provide an analysis of the particles.
Abstract:
Improved methods to detect when a human body contacts a predetermined portion of a machine are disclosed. The methods distinguish contact with a person from contact with other materials. The methods are particularly applicable in woodworking equipment such as table saws to distinguish contact between a person and the blade of the saw from contact between the blade and wet or green wood.
Abstract:
Improved methods to detect when a human body contacts a predetermined portion of a machine are disclosed. The methods distinguish contact with a person from contact with other materials. The methods are particularly applicable in woodworking equipment such as table saws to distinguish contact between a person and the blade of the saw from contact between the blade and wet or green wood.
Abstract:
Fluid sample tester assembly (12) comprises a cartridge (6) having a pressure chamber (22) and entrance port (20) connected by a passageway (24). An analyte reagent (36) is positioned along the fluid passageway so that when a liquid sample (28) is drawn through the entrance port into the passageway, the analyte reagent mixes with the sample. The sample is preferably drawn into the cartridge by temporarily reducing the volume of the pressure chamber, applying the sample to the entrance port and then returning the pressure chamber to its initial volume; this can also be done by heating the chamber, contacting the sample and then cooling the chamber. The end of the sample defines a boundary surface (30) along the fluid passageway. Positive and negative pressure is applied to the sample to cause the boundary surface to oscillate within the passageway. The position of the boundary surface is continuously monitored so that continuous boundary position data is obtained and is analyzed to obtain a flow-related characteristic, typically speed of coagulation, of the sample.
Abstract:
A sample collection and manipulation apparatus (2), typically used for collecting and manipulating a blood sample and measuring a component of that sample with the use of a reagent or ion-selective electrodes, includes a body member (4, 6, 8) defining a thermal pressure chamber (22) and a sample port (10). A measurement chamber (26) is formed along a fluid passageway (42, 16, 24) connecting the thermal pressure chamber with the sample port. The air within the thermal pressure chamber is preheated (54, 56, 60, 62, 63/65) to reduce its density and the sample port is then placed in contact with the liquid. As the gas cools, a partial vacuum is created within the thermal pressure chamber to draw a liquid sample through the passageway and into the measurement chamber. Appropriate analyte measurement techniques, such as optical or electrochemical, can then be carried out. Applications include the testing of blood gases, glucose, hemoglobin, electrolytes, coagulation and therapeutic drugs.
Abstract:
A system for selectively communicating promotional information to a person, includes a sensing system, a storage device, a controller, and a projection device. The sensing system measures a detectable feature associated with the person sensed by the sensing system and the storage device stores a plurality of promotional segments. The controller uses the measured detectable feature associated with the person for selecting one of the stored promotional segments and causing the projection device to project to the person at the predetermined location the selected promotional segment.
Abstract:
A system for selectively communicating promotional information to a person, includes a sensing system, a storage device, a controller, and a projection device. The sensing system measures a detectable feature associated with the person sensed by the sensing system and the storage device stores a plurality of promotional segments. The controller uses the measured detectable feature associated with the person for selecting one of the stored promotional segments and causing the projection device to project to the person at the predetermined location the selected promotional segment.
Abstract:
A system for selectively communicating promotional information to a person, includes a sensing system, a storage device, a controller, and a projection device. The sensing system measures a detectable feature associated with the person sensed by the sensing system and the storage device stores a plurality of promotional segments. The controller uses the measured detectable feature associated with the person for selecting one of the stored promotional segments and causing the projection device to project to the person at the predetermined location the selected promotional segment.
Abstract:
Fluid sample tester assembly (12) comprises a cartridge (6) having a pressure chamber (22) and entrance port (20) connected by a passageway (24). An analyte reagent (36) is positioned along the fluid passageway so that when a liquid sample (28) is drawn through the entrance port into the passageway, the analyte reagent mixes with the sample. The sample is preferably drawn into the cartridge by temporarily reducing the volume of the pressure chamber, applying the sample to the entrance port and then returning the pressure chamber to its initial volume; this can also be done by heating the chamber, contacting the sample and then cooling the chamber. The end of the sample defines a boundary surface (30) along the fluid passageway. Positive and negative pressure is applied to the sample to cause the boundary surface to oscillate within the passageway. The position of the boundary surface is continuously monitored so that continuous boundary position data is obtained and is analyzed to obtain a flow-related characteristic, typically speed of coagulation, of the sample.