Abstract:
An image processor, a printing apparatus, and an image processing method are provided that can reduce, when a plurality of types of inks are used to print an image, the color unevenness that is caused by the variation of ejecting characteristics among a pluralities of nozzles. To realize this, for a color formed by overlapping at least two colors of inks, parameters are prepared that are determined so as to reduce the color difference in the printing medium due to the variation of the ejecting characteristic among the respective pluralities of nozzles. During printing, the parameters are used to correct the first color signal owned by the individual pixels to the second color signal.
Abstract:
Provided is an image processing apparatus that can accurately and efficiently reduce color unevenness that occurs in a color image, which is formed by color mixture of a plurality of different types of inks, due to a variation in ejection characteristic among nozzles. The inks are respectively ejected from the nozzle arrays to print patches; regions where color correction for test color images should be performed are specified; a different types of color correction processing for color signals corresponding to the color correction regions are performed to print color correction patches; a color correction patch to be used is selected; on the basis of selected color correction processing, a table parameter corresponding to a nozzle is formed; when the plurality of color correction patches are formed, only correction candidate values having larger color differences than a predetermined threshold value in a uniform color space are generated for color signals.
Abstract:
When the width of a recording head is greater than the width of a recording medium having a maximum conveyable width, a recorded image corresponding to ejecting ports in the entire area of the recording head cannot be corrected. Multiple correction test patterns are recorded using ejecting ports in part of the recording head, and correction data for correcting an image corresponding to ejecting ports in the entire area of the recording head on the basis of the colorimetric result of the test patterns. In this way, image data to be recorded by the ejecting ports in the entire area of the recording head is corrected.
Abstract:
Area information is obtained with respect to a specified color and nozzle position having color unevenness. Then, coordinate information indicating a nozzle position corresponding to the above area information is obtained in a printing head or nozzle array corresponding to an ink color relating to the specified color information. Next, the number of candidate correction values or candidate patches is obtained on the basis of nozzle coordinates obtained corresponding to the area, by referring to a table. In this table, for example, the number of candidate correction values is small at a nozzle position where an effect due to the variations of nozzle ejection characteristics such as a nozzle ejection volume is small and a change direction is constant, and the number of candidate correction values is large at a nozzle position where an effect due to variations of nozzle ejection characteristics is large.
Abstract:
When printing an image using a plurality of inks, color unevenness caused by variations in ejection characteristics among nozzles is corrected at suitable timings in accordance with change in the color unevenness over time, and favorable image output without noticeably color unevenness is maintained. For this purpose, parameters are prepared, for colors formed by combinations of at least two colors of ink, the parameters being determined so as to reduce differences in coloration on a print medium caused by individual variations in the ejection characteristics of a plurality of nozzles. When printing, a first color signal included in individual pixels is corrected for a second color signal by using the parameters. Information regarding the ejection volume characteristics of a plurality of nozzles is acquired as appropriate, and by estimating changes in coloration from this information, suitable timings for overwriting such parameters are determined.
Abstract:
For a printing apparatus which saves on a color material, an image processing apparatus is realized which enables a user to incur printing costs only for necessary information and necessary areas in a print product. For this purpose, there is provided an image processing apparatus including a separation unit configured to analyze and separate print information into text, photograph, and graphic constituent elements, a display unit configured to display information about a color material used amount to be used in printing for each of the separated constituent elements, and a setting unit configured to allow a user to set a change in the color material used amount for each of the separated constituent elements.
Abstract:
This invention is an image processing apparatus capable of adding a reference frame for accurately specifying an image region printed on a printing medium. An image forming unit (13) converts an input image for printing into that of a predetermined resolution. An additional information multiplexer (14) embeds additional information in each predetermined region of the resolution-converted image. A reference frame addition unit 15 adds a predetermined reference frame to the perimeter of the image in which the additional information is embedded. A printer (16) prints the image having the additional information embedded in it and the reference frame onto a printing medium, and outputs a printed image (17).
Abstract:
This invention provides an image processing apparatus which can effectively remove conspicuous noise contained in image data, while suppressing deterioration of image information. Image data containing noise is input from an input terminal (100). Based on the output condition upon outputting image data after noise is removed, a parameter determination module (103) determines predetermined parameters used in a noise removal process. An example of the output condition is information associated with a resolution upon outputting image data. An individual noise removal module (104) removes noise contained in the image data using the parameters, and image data after the noise has been removed is output from an output terminal (105).
Abstract:
A surrounding pixel reference unit reads out and stores image data having a predetermined size from a line buffer. A color judgment unit detects the color of the image (reference image) stored in the surrounding pixel reference unit. A parameter determination unit determines parameters used in an individual noise removal unit on the basis of the color detected by the color judgment unit, and supplies them to the individual noise removal unit. The individual noise removal unit reads out, from the line buffer, an image which is located at the same position as that read out by the surrounding pixel reference unit and has a size according to the parameters supplied from the parameter determination unit, and executes a noise removal process for the readout image in accordance with the parameters supplied from the parameter determination unit.
Abstract:
A maximum embedding amount can be ensured depending on information to be embedded, by determining an error-correction capability in correspondence with the characteristic of embedded information. For this purpose, upon multiplexing additional information, the additional information is error-correction encoded. At this time, if the additional information is a BMP file, a WAV file or the like, coding is performed with a low error-correction capability since image reproduction can be made without serious problem even if the error-correction capability is low. The error-correction capability is determined by an error-correction parameter determination unit 205 based on an extension of the additional information.