Abstract:
To provide an inkjet printing apparatus that suppresses occurrence of image deterioration, such as a texture, a moire, and a streak in a printing result. In order for this to be achieved, a level is set up to a overlapping portion of a chip of a print head depending on dot impact accuracy, and a print data distribution rate of each chip in the overlapping portion is determined according to the level.
Abstract:
A first reading unit that reads a pattern or an image formed on a sheet by a print unit for recognizing a print unit state, a second reading unit that reads a cut mark formed on the sheet on a downstream thereof, a cutter that cuts the sheet on a downstream thereof, and a reverse unit that reverses the sheet fed to the print unit again are provided. In duplex printing, the sheet where images are sequentially printed on a first surface is led to the reverse unit, the front and rear faces are reversed, and the sheet is fed to the print unit again. The sheet where images and cut marks are sequentially printed on a second surface is cut by the cutter for each piece and discharged. The sheet is cut on the basis of a reading of the cut mark by the second reading unit.
Abstract:
The present invention provides a recording apparatus including recording heads each including a plurality of nozzle arrays that are arranged so as to overlap, wherein overlapping portions of the recording heads for two different colors are separated from each other with a distance therebetween in an array direction of nozzles.
Abstract:
An apparatus includes: a drying unit to dry a printing medium on which an image was printed using an inkjet head; a humidification unit to humidify the printing medium that was dried by the drying unit so that the moisture content of the printing medium becomes the equilibrium state in the ambient environment; a colorimetric unit to perform colorimetry on the printing medium that was humidified by the humidification unit; and a calibration unit to calibrate printing properties on the basis of the result of colorimetry by the colorimetric unit.
Abstract:
In a line-head type inkjet printing apparatus that ejects a plurality of types of inks, an inkjet printing apparatus is provided in which the change of its ejection properties different depending on the type of ink is prevented from occurring. The line-head type printing apparatus includes an acquisition unit that counts the ejection number of liquid from each of print heads in each of a plurality of print heads. Furthermore, the printing apparatus compares the ejection number of liquid from each of the print heads counted by the acquisition unit with a threshold value set for each of the print heads. The printing apparatus includes a change unit that can move a holder in the main scanning direction when the counted ejection number of liquid exceeds the threshold value set for the print head.
Abstract:
A waiting time Ts is decided on the basis of ink type information and ink feed amount information, referring to waiting time table A (Step 6). Along with this, a dried printing paper is carried to and stopped in a waiting area 9 (Step 7), a time period T is measured after stopping, and measurement processing in the next step is delayed until the time period T reaches the waiting time Ts. Then, when the time period T reaches the waiting time Ts, a measuring instrument 10 is used to measure a density of a patch printed on the printing paper (Steps 8 and 9).
Abstract:
An image processing apparatus includes a first unit for converting primary color data into color data for outputting a dark color material only in a first mode, and a second unit for converting the primary color data into color data for outputting both the dark color material and a light color material in a second mode.
Abstract:
Print data is generated for being printed by an ink-jet printing apparatus, which has a first mode for high-speed printing and a second mode for high-quality printing, for performing multiple-pass printing by an ink-jet printhead provided with orifices for discharging ink droplets of large volume and orifices for discharging ink droplets of small volume. When the print data is generated, a user is allowed to select whether specified image data should be printed in the first or second mode. When image data is converted to print data in accordance with the mode selected, the number of ink droplets of the small volume, which are used to print an area of high density or high saturation in regard to a prescribed color in the first mode, is set to be less than the number of ink droplets of the small volume used in printing this area in the second mode.
Abstract:
An ink jet printing method uses an ink jet ejecting portion for ejecting ink on a printing material and a print quality improving liquid ejecting portion for ejecting print quality improving liquid on the printing material. The application mode of the print quality improving liquid is different depending on the printing mode in which a printing operation is carried out.
Abstract:
Per every one printing scan of a head, a printing data to be printed by the corresponding scan is divided into L in a scanning direction (lateral direction) and N in a paper feeding direction (longitudinal direction. Concerning each counting blocks identified by l and number of driving rln is counted. Then, with respect to each l, rln are sequentially summed from n=1 to obtain Sl. At every time of summing for deriving Sl, judgment is made whether Sl is greater than a predetermined value R determined in association with a power source capacity. When judgment is made that Sl is greater than R, printing of a printing data corresponding to the counting blocks of 1 to (n−1) with respect to n−1 which is one smaller value that the value n of the counting block upon judgment that Sl is greater than R, is performed, and then paper feeding is performed for the corresponding counting blocks. Thus, lowering of throughput can be restricted with optimally using the power source capacity of the apparatus.