Abstract:
In a line-head type inkjet printing apparatus that ejects a plurality of types of inks, an inkjet printing apparatus is provided in which the change of its ejection properties different depending on the type of ink is prevented from occurring. The line-head type printing apparatus includes an acquisition unit that counts the ejection number of liquid from each of print heads in each of a plurality of print heads. Furthermore, the printing apparatus compares the ejection number of liquid from each of the print heads counted by the acquisition unit with a threshold value set for each of the print heads. The printing apparatus includes a change unit that can move a holder in the main scanning direction when the counted ejection number of liquid exceeds the threshold value set for the print head.
Abstract:
There is provided an inkjet printing apparatus which can output a stable image without density unevenness by performing appropriate drive control to print elements based upon an appropriate representative temperature of a chip whatever image data is printed on a print medium. For this purpose, detection temperatures of a plurality of temperature sensors are lined up in high temperature order, and coefficients by which the respective detection temperatures are multiplied, are determined to be associated with that order at the lining-up, determining a representative temperature by the weighted average method. The common drive pulse associated with to the individual chip based upon the representative temperature thus obtained, to be applied thereto. Thereby even if temperature variations of print elements on the chip exist, it is possible to appropriately control the entire chip in temperature.
Abstract:
In the present invention, a conveying operation of a recording medium is controlled on the basis of a first correction value and a second correction value. The first correction value is used for correcting a conveying amount when the recording medium disengages from a first conveying roller, and the second correction value is used for correcting the phase of the first conveying roller and a second conveying roller when the recording medium disengages from the first conveying roller before the recording medium is nipped by the first conveying roller.
Abstract:
A recording apparatus includes a recording unit configured to record a first dot and a second dot having a diameter smaller than that of the first dot on a recording medium, and a scanning unit configured to move the recording unit in a scanning direction. A recording resolution of the second dot in the scanning direction is lower than a recording resolution of the first dot in the scanning direction.
Abstract:
An ink jet printing apparatus is provided that can perform printing without degrading printing quality. In the present invention, correction for a head-to-sheet distance change is performed for both forward printing and backward printing during a multi-path printing operation.
Abstract:
A recording apparatus to record an image on a recording medium using a recording head includes a first conveying roller, a second conveying roller, and a controller. The first conveying roller is positioned upstream of the recording head in a conveying direction and the second conveying roller is positioned downstream of the recording head in the conveying direction. In response to a first conveying mode being selected, the controller performs a rotational phase control in which the controller controls rotational phases of the first conveying roller and the second conveying roller such that the recording medium is conveyed by predetermined sections of circumferences of the first conveying roller and the second conveying roller when a trailing end of the recording medium passes the first conveying roller. In response to the second conveying mode being selected, the controller does not perform the rotational phase control.
Abstract:
In the present invention, a conveying operation of a recording medium is controlled on the basis of a first correction value and a second correction value. The first correction value is used for correcting a conveying amount when the recording medium disengages from a first conveying roller, and the second correction value is used for correcting the phase of the first conveying roller and a second conveying roller when the recording medium disengages from the first conveying roller before the recording medium is nipped by the first conveying roller.
Abstract:
A recording apparatus includes: a recording head having a recording element row in which multiple recording elements are disposed, with recording elements at dispersed positions in the recording element rows as blocks; a scanning unit configured to scan the recording head in a main scanning direction; a time-division driving unit configured to drive the recording elements in increments of blocks; a storing unit configured to store recording data; an obtaining unit configured to obtain information relating to the inclination of the recording element row relative to the main scanning direction; and a changing unit operable to change, in increments of individual recording elements, the storage position in the main scanning direction of recording data stored in the storing unit that is to be provided to recording elements of a group, which is configured of consecutive recording elements in each block in the recording element row, based on the obtained information.
Abstract:
In the present invention, a conveying operation of a recording medium is controlled on the basis of a first correction value and a second correction value. The first correction value is used for correcting a conveying amount when the recording medium disengages from a first conveying roller, and the second correction value is used for correcting the phase of the first conveying roller and a second conveying roller when the recording medium disengages from the first conveying roller before the recording medium is nipped by the first conveying roller.
Abstract:
For a serial color ink jet printing apparatus that forms an image using a symmetric printing head that ejects large dots and small dots, the configuration of a printing head is provided for suppressing, to the extent possible, a cyclic fluctuation in the main scanning direction. According to the present invention, individual nozzle arrays are arranged so that two nozzle arrays, i.e., a cyan nozzle array c1 and a magenta nozzle array m1, that are located nearer each other, form dots on adjacent scan lines. With this arrangement, a high quality image, having neither an uneven density nor an uneven color, can be formed when a printing head is inclined, or when a cyclic shift in printing positions occurs, depending on the position of the main scanning direction.