Abstract:
An inkjet recording apparatus includes an ejection head configured to eject an ink to form an image, a head heater configured to heat the ejection head to a temperature T1 and a control unit configured to control the temperature of the ejection head and the temperature at an image forming position by the ejection head. The control unit controls heating of the ejection head by the head heater and the temperature at the image forming position in such a way that the temperature of the ejection head is higher than the temperature at the image forming position.
Abstract:
The inkjet recording apparatus includes a recording head, a heater, a first control portion, and a second control portion. The recording head is configured to eject ink toward a sheet. The heater is capable of heating the ink on a supply path for the ink leading from an ink containing portion containing the ink to the recording head. The first control portion is configured to comprehensively control the inkjet recording apparatus, and power supply to the first control portion is stopped when a predetermined power supply stop condition is satisfied. The second control portion includes: a temperature detection portion configured to detect a temperature inside the inkjet recording apparatus; and a heater driving portion configured to drive the heater when the temperature detected by the temperature detection portion has become lower than a predetermined reference temperature, and the second control portion is provided separately from the first control portion.
Abstract:
According to an example, in a method for enhancing temperature distribution uniformity across a printer die, in which the printer die includes a plurality of drop generators arranged in a plurality of columns, a warming map that identifies the drop generators of the plurality of drop generators that are to be supplied with warming pulses to enhance temperature distribution uniformity across the printer die may be accessed. The warming map may identify a non-uniform distribution of the drop generators across a column of the plurality of columns. In addition, the warming map may be implemented to supply the drop generators identified in the warming map as the drop generators that are to receive the warming pulses.
Abstract:
A liquid discharge device to perform recording by use of a liquid discharge head including discharge ports to discharge a liquid, pressure generation elements to generate energy to be used to discharge the liquid, and pressure chambers communicating with the discharge ports. The liquid discharge device includes: a control unit to control a temperature of the liquid discharge head by applying heat with heating elements arranged in divided areas of a region of the liquid discharge head where the discharge ports are arranged. When there is recording data for the discharge port in a certain one of the divided areas, the control unit causes the heating element in the divided area to generate heat, and when there is no recording data for the discharge port in the certain divided area, the control unit keeps the heating element in the certain divided area from generating heat.
Abstract:
According to an embodiment of this invention, the following data transfer between a printhead and a printing apparatus is performed. That is, a priority is set for each of a plurality of data to transfer the plurality of data. Print timings of the printhead are generated in accordance with a relative moving speed between the printhead and a print medium, and the print resolution of the printhead. Data to be transferred to the printhead in an interval between the generated print timing and the next print timing following the print timing are selected from the plurality of data based on the interval, the data length of each of the plurality of data, and the set priorities. The selected data are transferred to the printhead.
Abstract:
Heating is stopped in between recordings in a first recording mode where the time between recordings is relatively long, while heating is continuously performed in between recordings in a second recording mode where the time between recordings is relatively short.
Abstract:
A drive signal may be determined to drive a printhead to a series of target temperatures during respective portions of a print pass by the printhead. Each of the target temperatures may be the greater of a temperature of the printhead caused by printing a quantity of printing fluid to be printed during the respective portion and a predetermined threshold temperature. A drive signal may be provided to warm the printhead to the series of target temperatures during the respective portions of the print pass.
Abstract:
Heating is stopped in between recordings in a first recording mode where the time between recordings is relatively long, while heating is continuously performed in between recordings in a second recording mode where the time between recordings is relatively short.
Abstract:
Microfluidic delivery systems and methods for dispensing a fluid composition into the air comprising microfluidic die and at least one heating element that is configured to receive an electrical signal comprising a certain on-time and wave form to deliver a fluid composition into the air.
Abstract:
An ink jet printer includes an image control unit that controls rotation of image data so that a direction of a short side of a rectangular area in a printing sheet becomes a print width direction that is orthogonal to a sheet transport direction if a first warm-up time calculated by a warm-up time calculation unit is shorter than a warm-up time until an ink temperature of an overall ink discharge target width of an ink jet head reaches an appropriate temperature range.