Abstract:
An image forming apparatus performs printing of only a special color area by extracting an area to which a special color ink is to be applied or an area to which a decorative printing, such as a texture, is to be performed and not applying ink on an area other than the extracted area.
Abstract:
An information processing apparatus includes a processor configured to, in a case where a first color material, a second color material, a third color material, and a fourth color material in which a difference between the first color material and the fourth color material in a color space is less than a threshold value, are capable of being used, output combinations of values of color materials reproducing a first color, which is used for expanding a color gamut of a secondary color of the first color material and the second color material, and a second color, which is used for expanding a color gamut of a secondary color of the first color material and the third color material.
Abstract:
An information processing apparatus includes a processor configured to, in a case where a first color material, a second color material, a third color material, and a fourth color material in which a difference between the first color material and the fourth color material in a color space is less than a threshold value, are capable of being used, output combinations of values of color materials reproducing a first color, which is used for expanding a color gamut of a secondary color of the first color material and the second color material, and a second color, which is used for expanding a color gamut of a secondary color of the first color material and the third color material.
Abstract:
A profile adjustment system displays, in a display device 115, an input field of a coordinate of an adjustment point P0 disposed on a color space, and includes an adjustment coordinate reception unit U1, an adjustment influence range reception unit U3, a linking configuration reception unit U4, a linking configuration display processing unit UA, an adjustment coordinate configuration unit U5, an adjustment influence range configuration unit U6, a whole adjustment influence range display processing unit UB configured to display, in the display device 115, a whole adjustment influence range including U3, U4, U5, and U6, and a profile adjustment unit U7 configured to adjust a profile based on all adjustment points P0 configured in the adjustment coordinate reception unit U1 and an adjustment point Qx added by the adjustment coordinate configuration unit U5.
Abstract:
Examples herein provide a method. The method includes printing first color patches at a first location on a first side of a print medium. The method includes generating an international color consortium (“ICC”) profile of the first side by characterizing the first color patches using a spectrophotometer. The method includes printing, using the ICC profile of the first side, second color patches at a second location on the first side of the print medium. The method includes printing third color patches on a second side of the print medium, the third patches being a registered mirrored copy of the second patches. The method includes generating an ICC profile of the second side by characterizing the registered second and third patches using the spectrophotometer.
Abstract:
According to exemplary methods, a processor of a printing device determines color values out of a first colorant combination using marking materials for standard colorants and marking materials for one or more extended gamut colors. The extended gamut color has colorants other than the standard colorants. Responsive to the first colorant combination including color values for each of a pair of two complementary colors, the processor calculates a second colorant combination that produces the same human-perceivable color as the first colorant combination. The second colorant combination includes only one color of the pair of two complementary colors. The printing device produces output using the second colorant combination for the standard colorants and the extended gamut color.
Abstract:
There are provided a printing system, a method of generating a halftone processing rule, a method of acquiring a characteristic parameter, image processing device and method, a halftone processing rule, a halftone image, a method of manufacturing a printed material, an ink jet printing system, and a program which are capable of reducing an operation load of a user and acquiring a halftone processing rule appropriate for the printing system. A characteristic parameter acquisition chart (100) including a pattern for acquiring characteristic parameters related to characteristics of the printing system is output, and the output characteristic parameter acquisition chart (100) is read by image reading means. The characteristic parameters are acquired by analyzing the read image of the characteristic parameter acquisition chart (100), and halftone processing rules that define the processing contents of halftone processes used in the printing system are generated based on the acquired characteristic parameters.
Abstract:
In a method to control a color printer or color copier, a color separation of a first color and a color separation of a second color are applied to a printing substrate to generate a print image. Also, with aid of a printing unit, at least a first control field is printed on the printing substrate. The first control field has a predetermined pattern that includes at least the first color and the second color and is designed such that a color value of the first control field changes depending on a registration error between the first and the second color separations. A reference field is also printed on the printing substrate, a pattern of the reference field being predetermined such that it has a same color value independent of the registration error. The color value of the first control field is measured with a color value sensor. The color value of the reference field is also measured with the color value sensor and a desired color value is determined depending on the color value of the reference field. A deviation between the measured color value of the first control field and the desired color value is determined, the deviation corresponding to a spatial shift of the color separations. At least one control signal is generated to reduce the spatial shift depending on the determined deviation.
Abstract:
An image processing apparatus includes: a storage unit to store therein, for each of a plurality of colors, correction information in which a correction value for obtaining a target output value is associated with each of combinations of one of a plurality of density values of image data corresponding to the color and one of a plurality of positions in a main scanning direction of image data; and a corrector to correct, when a pixel in input image data indicating image data received from a host device includes two or more colors, for each of the two or more colors, a density value of the color using a value smaller than a correction value corresponding to a combination of the density value of the color and a position of the pixel in the main scanning direction.
Abstract:
The present disclosure advantageously provides apparatus, systems and methods which facilitate estimating and accounting for illumination conditions, viewing conditions and reflectance characteristics for imaged surfaces when performing color measurement, correction and/or transformation in an imaging process, such as photography. Advantageously, the disclosed apparatus, systems and methods may utilize a set of one or more illumination target elements for extrapolating illumination conditions from an imaged scene. The disclosure may be used to improve determination of color correction/transformation parameters and/or to facilitate determining a reflectance model for a target surface of interest.