Abstract:
A transition metal nitride is obtained by a nitriding treatment of a surface of a base material including a transition metal or an alloy of the transition metal, and the transition metal nitride has a crystal structure of an M4N type and a crystal structure of an ε-M2˜3N type, and is formed over a whole area of the surface of the base material and continuously in a depth direction from the surface.
Abstract:
A transition metal nitride is obtained by a nitriding treatment of a surface of a base material including a transition metal or an alloy of the transition metal, and the transition metal nitride has a crystal structure of an M4N type and a crystal structure of an ε-M2˜3N type, and is formed over a whole area of the surface of the base material and continuously in a depth direction from the surface.
Abstract:
A transition metal nitride comprises a first layer formed of a nitride of a stainless steel containing at least Fe and Cr and a second layer formed on the first layer and having an exposed surface. The second layer is formed of another nitride having contents of components that differ from those in the first layer. The first and second layers have a composition distribution in which a Cr concentration is continuously changed from the first layer to the second layer in a thickness direction of these layers, and the second layer has a nitride deposition protruding from a base portion of an exposed surface. A fuel cell separator comprises a base layer formed of a stainless steel containing at least Fe and Cr and a nitride layer formed of a transition metal nitride as described. Methods of forming transition metal nitrides and fuel cell separators are also included, as is a fuel cell vehicle including a fuel cell stack.
Abstract:
A transition metal nitride comprises a first layer formed of a nitride of a steel containing at least Fe ad Cr and second layer formed on a first layer and having an exposed surface. The transition metal nitride has a composition distribution in which Cr concentration is continuously changed from the first layer to the second layer in a thickness direction of these layers. A fuel separator comprises a base layer formed of a stainless steel containing at least Fe and Cr and a nitride layer formed of a transition metal nitride as described. Methods of forming transition metal nitrides and fuel cell separators are also included, as is a fuel cell vehicle including a fuel cell stack.
Abstract:
A separator for a fuel cell comprises a corrugated or undulated gas flow path portion (4) formed on central portion (2) of a clad thin plate: and a flat portion (6) formed on an outer periphery of the central portion, wherein the clad thin plate is obtained by applying rolling work on a metal plate whose surface is covered with a precious metal layer at a draft of 5% to 15% to make clad, and a limit plate thickness residual rate indicating a boundary limit in which cracking of the precious metal layer in the clad thin plate and reduction of corrosion resistance due to exposure of the metal plate are negligible is obtained in advance, wherein regarding a sectional shape in a direction orthogonal to a flow path of the gas flow path portion (4), when a plate thickness of the thinnest portion of a rib shoulder portion is represented as t2 and a plate thickness of a peripheral portion of the separator is represented as t4, a relationship of t2≧t4×limit plate thickness residual rate is satisfied.
Abstract:
A liquid activated air battery includes: an electrode assembly that includes an air electrode and a metal anode; a battery container that is capable of holding the electrode assembly and electrolytic solution; a supply tank for the electrolytic solution to be supplied to the battery container; a drainage tank for the electrolytic solution discharged from the battery container; and pumps as an electrolytic solution flow mechanism that runs the electrolytic solution from the supply tank to the drainage tank through the battery container. The composition of the electrolytic solution supplied to the battery container is kept constant, and stable power output is ensured.
Abstract:
An air cell includes a positive electrode layer, an electrolyte layer stacked on the positive electrode layer, a negative electrode layer stacked on the electrolyte layer and an electroconductive liquid-tight ventilation layer stacked on the positive electrode layer, the electroconductive liquid-tight ventilation layer being positioned on the opposite side of the positive electrode from the electrolyte layer. The assembled battery is provided with a plurality of the air cells described above. The assembled battery is provided with a flow path through which oxygen-containing gas flows interposed between the electrically-conductive liquid-tight ventilation layer of a first air cell and the negative electrode layer of a second air cell adjacent to the first air cell. The first air cell is electrically connected to the negative electrode layer of the second air cell via the electrically-conductive liquid-tight ventilation layer.
Abstract:
A composite electrode for an electricity storage device of the present invention includes: a substrate; a whisker or a fiber which is made of at least one of a metal and a metal compound and is formed on the substrate; and a coating layer which contains an active material and is formed on at least a part of a surface of the whisker or the fiber.
Abstract:
A transition metal nitride obtained by nitriding a base material including an austenitic stainless steel having a Cr concentration of 25% or more includes a first layer (first nitrided layer) formed continuously on a base layer formed by the base material, having a stacked crystal structure of a nano-level including a nitride having a cubic crystal structure of M4N type, and a nitride having a hexagonal crystal structure of M2-3N type, and a second layer (second nitrided layer) formed continuously on the first layer, including a nitride having at least one kind of crystal structure out of hexagonal crystal structures of Cr2N, CrN, and M2-3N type, and a cubic crystal structure of M4N type, and being formed as a surface-nitriding-processed portion of the base material continuously in a depth direction from a surface of the base material.
Abstract:
A fuel cell separator (1) of the present invention has a base material (5) formed of titanium, and a nitride compound layer (6) composed of titanium and nitrogen and provided on a surface of the base material (5). In the fuel cell separator (1), the contact resistance which occurs between a gas diffusion layer and the separator (1) is low, the corrosion resistance is excellent, and the separator (1) can be manufactured at low cost.