摘要:
A hydrogen storage method is provided which enables a hydrogen storage alloy to store hydrogen up to a maximum hydrogen storage amount thereof in excess of a generally known theoretical value. In a hydrogenation step, a hydrogen storage ratio calculated as an atomic weight ratio between hydrogen and the hydrogen storage alloy is obtained beforehand as a theoretical value, a pressure at which the hydrogen storage alloy stores hydrogen up to the theoretical value is set as a first pressure value, a pressure value ten or more times greater than the first pressure value is set as a second pressure value, and pressure is increased up to the second pressure value. In a dehydrogenation step, the pressure is decreased from the second pressure value to or below the first pressure value. The hydrogenation step and the dehydrogenation step are repeatedly executed.
摘要:
A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
摘要:
A hydrogen sensor using a hydrogen-absorbing alloy containing an Mg—Ni-based alloy and a Zr—Ti-based alloy includes a substrate (2), a hydrogen reaction layer (3) formed on the substrate (2) and containing the Mg—Ni-based alloy and the Zr—Ti-based alloy, and a first catalyst layer (4) formed on the hydrogen reaction layer (3) and capable of accelerating hydrogenation of the Mg—Ni-based alloy.
摘要:
A wafer having a front face formed with a functional device is irradiated with laser light while positioning a light-converging point within the wafer with the rear face of the wafer acting as a laser light incident face, so as to generate multiphoton absorption, thereby forming a starting point region for cutting due to a molten processed region within the wafer along a line. Consequently, a fracture can be generated from the starting point region for cutting naturally or with a relatively small force, so as to reach the front face and rear face. Therefore, when an expansion film is attached to the rear face of the wafer by way of a die bonding resin layer after forming the starting point region for cutting and then expanded, the wafer and die bonding resin layer can be cut along the line.
摘要:
A light-emitting device manufacturing method comprises the steps of irradiating a substrate 2 having a III-V compound semiconductor layer 17 formed on a front face 2a with laser light L1 along lines to cut 5a, 5b, while locating a converging point P1 within the sapphire substrate 2 and using a rear face 2b thereof as a laser light entrance surface, and thereby forming modified regions 7a, 7b along the lines 5a, 5b within the substrate 2; then forming a light-reflecting layer on the rear face 2b of the substrate 2; and thereafter extending fractures generated from the modified regions 7a, 7b acting as a start point in the thickness direction of the substrate 2, and thereby cutting the substrate 2, the semiconductor layer 17 and the light-reflecting layer along the lines 5a, 5b, and manufacturing a light-emitting device.
摘要:
A working object grinding method capable of grinding a working object reliably is provided. A working object 1 is irradiated with a laser beam while locating a converging point therewithin, so as to form a reformed region 7 in the working object 1 along a reformed-region forming line set at a predetermined distance inside from an outer edge of the working object 1 along the outer edge, and a rear face 21 of the working object 1 is ground. As a result, the reformed region 7 or fissures C1 extending therefrom can inhibit fissures generated in an outer edge portion 25 upon grinding the working object 1 from advancing to the inside, whereby the working object 1 can be prevented from fracturing.
摘要:
Multiphoton absorption is generated, so as to form a part which is intended to be cut 9 due to a molten processed region 13 within a silicon wafer 11, and then an adhesive sheet 20 bonded to the silicon wafer 11 is expanded. This cuts the silicon wafer 11 along the part which is intended to be cut 9 with a high precision into semiconductor chips 25. Here, opposing cut sections 25a, 25a of neighboring semiconductor chips 25, 25 are separated from each other from their close contact state, whereby a die-bonding resin layer 23 is also cut along the part which is intended to be cut 9. Therefore, the silicon wafer 11 and die-bonding resin layer 23 can be cut much more efficiently than in the case where the silicon wafer 11 and die-bonding resin layer 23 are cut with a blade without cutting a base 21.
摘要:
A laser processing method comprising a step of irradiating an object to be processed with laser light elliptically polarized with an ellipticity of other than 1 such that a light-converging point of the laser light is located within the object along the major axis of an ellipse indicative of the elliptical polarization of laser light, along a line which the object is intended to be cut, to form a modified region caused by multiphoton absorption within the object, along the line which the object is intended to be cut.
摘要:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
摘要:
Multiphoton absorption is generated, so as to form a part which is intended to be cut 9 due to a molten processed region 13 within a silicon wafer 11, and then an adhesive sheet 20 bonded to the silicon wafer 11 is expanded. This cuts the silicon wafer 11 along the part which is intended to be cut 9 with a high precision into semiconductor chips 25. Here, opposing cut sections 25a, 25a of neighboring semiconductor chips 25, 25 are separated from each other from their close contact state, whereby a die-bonding resin layer 23 is also cut along the part which is intended to be cut 9. Therefore, the silicon wafer 11 and die-bonding resin layer 23 can be cut much more efficiently than in the case where the silicon wafer 11 and die-bonding resin layer 23 are cut with a blade without cutting a base 21.