摘要:
A potable water producing system for disposition at a salt water body and methods of producing potable water are provided. The system includes a wave energy conversion system (AWECS) and a portable filtration system. The AWECS forms a floating articulated barge having an onboard desalination system including reverse osmosis membranes. The filtration system is a sand filter residing on a damping plate submerged in the salt water body and filters the adjacent salt water for providing filtered salt water to the onboard desalination system. Wave action on the articulated barge provides energy to pump and pressurize the filtered salt water from the sand filter to the reverse osmosis membranes to produce potable water. The wave action on the articulated barge effects shaking of the reverse osmosis membranes, thereby rendering them self-cleaning. The potable water can be used for various applications, e.g., bottling, replenishing aquifers, ground and/or aquifer remediation, irrigation, etc.
摘要:
A hinge system and method for an Articulated Wave Energy Conversion System (AWECS) that provides for hinge and piston pump displacements due to multi-axis forces in allowing adjacent barges of the AWECS to pivot with respect to one another due to wave motion. The hinge system uses a plurality of parallel hinges, and axle segments, coupled between adjacent barges wherein the hinges are coupled to upright trusses positioned transversely along facing edges of each barge. Hinge bracing includes lower V-shaped struts that act as lower stops when the barges pitch up and also include upper struts that act as upper stops when the barges pitch down. The pumps are positioned in parallel. The pumps have special couplings such as ball joint couplings that permit motions other than longitudinal pump/ram motions due to multi-axis forces generated by the wave motion and thus provide omni-directional stress relief to the pumps.
摘要:
A bi-directional pump system that can be configured for a plurality of operating modes. The bi-directional pump system includes a plurality of bi-directional pumps each having their own valving system that are connected to a common high pressure manifold, a low pressure manifold and a suction manifold. Via the respective valve systems, each pump can be configured into: (1) a single-acting pumping mode; (2) a double-acting pumping mode; (3) an inactive free motion mode; and (4) an inactive rigid mode. One exemplary application of the bi-directional pump system is on an articulated wave energy conversion system that consists of three floating barges: a front barge, a center barge and a rear barge where the front barge and center barge are hingedly connected as are the center barge and the rear barge. A first set of the bi-directional pumps span the first hinge connection and the second set of bi-directional pumps span the second hinge connection. The bi-directional pump system intakes sea water and, using wave energy, outputs a high pressure flow of sea water for water desalination and/or for driving electrical generators.
摘要:
A filter-anchor for placement on a sea floor is provided. It includes a filter housing for filtering sea water prior to entry into a water desalinization system. The filter housing has an exterior, an interior chamber, at least one inlet for providing the sea water to the interior chamber, and at least one outlet for enabling filtered water to be pumped from the interior chamber. A sand filter is disposed in the filter housing. The filter housing has at least one water conduction outlet conduit for filtered water to be pumped to the desalinization system. A wave energy conversion system utilizing the filter anchor is also provided to effect the pumping of the filtered water to the desalinization system. A method of anchoring a wave energy conversion system and providing filtered water to a desalinization system is also provided.
摘要:
A constrained buoy experiencing vortex-induced, in-line and transverse angular motions and designed to absorb and attenuate the energies of streams, rivers and localized ocean currents is described. Referred to as a Finned-Spar-Buoy (FSB), the buoy design can be considered an exoskeleton, in that vertical fins are externally mounted on a vertical cylindrical float. The fins increase the drag coefficient by enhancing the wake losses. The FSB operates as a single unit or as a component of an array, depending on the application. The FSB can adjust to high-water events caused by tides, storm surges or spring-melting runoffs because the FSB can move axially along a center-staff which is attached to an anchor pole at a pivot point. The buoy-staff system is allowed to rotate in any angular direction from the vertical, still-water orientation of the center-staff. The FSB has a relatively small diameter-to-draft ratio, analytically qualifying the buoy as a slender-body.
摘要:
Wave energy conversion systems (WECS) with internal power take-off mechanisms using internal inertias as well as WECS using a submerged water head for driving a turbine at a steady rate. The WECS involving internal inertias is effected through relative oscillation between masses inside the hull of watercraft excited by wave motion and whereby the masses' oscillations are captured by actuators (e.g., hydraulic) that pressurize a fluid or generate electricity. Different relative oscillation mechanisms are disclosed herein. The WECS involving a submerged water head involve the use of asymmetric floats, arranged in a circular orientation for omni-directional wave energy capturing, that drive respective pistons that pressurize the water head and drive the turbine. Alternatively, the use of articulating raft/barges or floats coupled via a lever arm can be used instead of the asymmetric floats for pressurizing the water head.
摘要:
A hinge system and method for an Articulated Wave Energy Conversion System (AWECS) that provides for hinge and piston pump displacements due to multi-axis forces in allowing adjacent barges of the AWECS to pivot with respect to one another due to wave motion. The hinge system uses a plurality of parallel hinges, and axle segments, coupled between adjacent barges wherein the hinges are coupled to upright trusses positioned transversely along facing edges of each barge. Hinge bracing includes lower V-shaped struts that act as lower stops when the barges pitch up and also include upper struts that act as upper stops when the barges pitch down. The pumps are positioned in parallel. The pumps have special couplings such as ball joint couplings that permit motions other than longitudinal pump/ram motions due to multi-axis forces generated by the wave motion and thus provide omni-directional stress relief to the pumps.
摘要:
A potable water producing system for disposition at a salt water body and methods of producing potable water are provided. The system includes a wave energy conversion system (AWECS) and a portable filtration system. The AWECS forms a floating articulated barge having an onboard desalination system including reverse osmosis membranes. The filtration system is a sand filter residing on a damping plate submerged in the salt water body and filters the adjacent salt water for providing filtered salt water to the onboard desalination system. Wave action on the articulated barge provides energy to pump and pressurize the filtered salt water from the sand filter to the reverse osmosis membranes to produce potable water. The wave action on the articulated barge effects shaking of the reverse osmosis membranes, thereby rendering them self-cleaning. The potable water can be used for various applications, e.g., bottling, replenishing aquifers, ground and/or aquifer remediation, irrigation, etc.
摘要:
A bi-directional pump system that can be configured for a plurality of operating modes. The bi-directional pump system includes a plurality of bi-directional pumps each having their own valving system that are connected to a common high pressure manifold, a low pressure manifold and a suction manifold. Via the respective valve systems, each pump can be configured into: (1) a single-acting pumping mode; (2) a double-acting pumping mode; (3) an inactive free motion mode; and (4) an inactive rigid mode. One exemplary application of the bi-directional pump system is on an articulated wave energy conversion system that consists of three floating barges: a front barge, a center barge and a rear barge where the front barge and center barge are hingedly connected as are the center barge and the rear barge. A first set of the bi-directional pumps span the first hinge connection and the second set of bi-directional pumps span the second hinge connection. The bi-directional pump system intakes sea water and, using wave energy, outputs a high pressure flow of sea water for water desalination and/or for driving electrical generators.
摘要:
A hinge system and method for an Articulated Wave Energy Conversion System (AWECS) that provides for hinge and piston pump displacements due to multi-axis forces in allowing adjacent barges of the AWECS to pivot with respect to one another due to wave motion. The hinge system uses a plurality of parallel hinges, and axle segments, coupled between adjacent barges wherein the hinges are coupled to upright trusses positioned transversely along facing edges of each barge. Hinge bracing includes lower V-shaped struts that act as lower stops when the barges pitch up and also include upper struts that act as upper stops when the barges pitch down. The pumps are positioned in parallel. The pumps have special couplings such as ball joint couplings that permit motions other than longitudinal pump/ram motions due to multi-axis forces generated by the wave motion and thus provide omni-directional stress relief to the pumps.