SCANNING PROBE MICROSCOPE AND SAMPLE OBSERVING METHOD USING THE SAME
    2.
    发明申请
    SCANNING PROBE MICROSCOPE AND SAMPLE OBSERVING METHOD USING THE SAME 有权
    扫描探针显微镜和使用其的样品观察方法

    公开(公告)号:US20130145507A1

    公开(公告)日:2013-06-06

    申请号:US13586754

    申请日:2012-08-15

    CPC classification number: G01Q60/18 G01Q60/22

    Abstract: In a near-field scanning microscope using an aperture probe, the upper limit of the aperture formation is at most several ten nm in practice. In a near-field scanning microscope using a scatter probe, the resolution ability is limited to at most several ten nm because of the external illuminating light serving as background noise. Moreover, measurement reproducibility is seriously lowered by a damage or abrasion of a probe. Optical data and unevenness data of the surface of a sample can be measured at a nm-order resolution ability and a high reproducibility while damaging neither the probe nor the sample by fabricating a plasmon-enhanced near-field probe having a nm-order optical resolution ability by combining a nm-order cylindrical structure with nm-order microparticles and repeatedly moving the probe toward the sample and away therefrom at a low contact force at individual measurement points on the sample.

    Abstract translation: 在使用孔径探针的近场扫描显微镜中,实际上孔径形成的上限为至多几十nm。 在使用散射探针的近场扫描显微镜中,由于外部照明光作为背景噪声,分辨能力被限制在至多几十nm。 此外,通过探针的损伤或磨损,测量再现性被严重降低。 可以以nm级分辨能力和高再现性测量样品表面的光学数据和不均匀性数据,同时通过制造具有nm级光学分辨率的等离子体增强近场探针而不损害探针和样品 通过将nm级圆柱形结构与nm级微粒组合,并在样品上的各个测量点处以低接触力将探针重复地移动到样品并从中离开它们的能力。

    Electrically connected graphene-metal electrode device, and electronic device, electronic integrated circuit and electro-optical integrated circuit using same
    3.
    发明授权
    Electrically connected graphene-metal electrode device, and electronic device, electronic integrated circuit and electro-optical integrated circuit using same 有权
    电气连接的石墨烯 - 金属电极器件,电子器件,电子集成电路和使用其的电光集成电路

    公开(公告)号:US08278658B2

    公开(公告)日:2012-10-02

    申请号:US12766960

    申请日:2010-04-26

    CPC classification number: H01L29/1606

    Abstract: An device according to the present invention comprises: graphene; and a metal electrode, the metal electrode and the graphene being electrically connected, the following relationship of Eq. (1) being satisfied: coth ⁡ ( r GP r C ⁢ S )

    Abstract translation: 根据本发明的装置包括:石墨烯; 和金属电极,金属电极和石墨烯电连接,等式 (1)满足:coth⁡(r GP r C S)<1.3,等式 (1)其中rGP(以&OHgr / /μm2为单位)表示每单位面积的石墨烯层的电阻,rC(以&OHgr;μm2为单位)表示石墨烯层与金属之间的单位面积的接触电阻 电极,S表示石墨烯层和金属电极之间的接触面积(以μm2为单位)。

    ELECTRICALLY CONNECTED GRAPHENE-METAL ELECTRODE DEVICE, AND ELECTRONIC DEVICE, ELECTRONIC INTEGRATED CIRCUIT AND ELECTRO-OPTICAL INTEGRATED CIRCUIT USING SAME
    5.
    发明申请
    ELECTRICALLY CONNECTED GRAPHENE-METAL ELECTRODE DEVICE, AND ELECTRONIC DEVICE, ELECTRONIC INTEGRATED CIRCUIT AND ELECTRO-OPTICAL INTEGRATED CIRCUIT USING SAME 有权
    电连接的石墨 - 金属电极装置和电子装置,电子集成电路和电光集成电路

    公开(公告)号:US20100270512A1

    公开(公告)日:2010-10-28

    申请号:US12766960

    申请日:2010-04-26

    CPC classification number: H01L29/1606

    Abstract: An device according to the present invention comprises: graphene; and a metal electrode, the metal electrode and the graphene being electrically connected, the following relationship of Eq. (1) being satisfied: coth  ( r GP r C  S )

    Abstract translation: 根据本发明的装置包括:石墨烯; 和金属电极,金属电极和石墨烯电连接,等式 (1)满足:coth(r GP r C S)<1.3,等式 (1)其中rGP(以&OHgr; /μm2为单位)表示每单位面积的石墨烯层的电阻,rC(以&OHgr;μm2为单位)表示石墨烯层和金属之间的每单位面积的接触电阻 电极,S表示石墨烯层和金属电极之间的接触面积(以μm2为单位)。

    SCANNING PROBE MICROSCOPE AND METHOD OF OBSERVING SAMPLE USING THE SAME
    6.
    发明申请
    SCANNING PROBE MICROSCOPE AND METHOD OF OBSERVING SAMPLE USING THE SAME 有权
    扫描探针显微镜及其使用方法观察样品

    公开(公告)号:US20100218287A1

    公开(公告)日:2010-08-26

    申请号:US12712745

    申请日:2010-02-25

    CPC classification number: G01Q60/22 G01Q70/12

    Abstract: In a scanning probe microscope, a nanotube and metal nano-particles are combined together to configure a plasmon-enhanced near-field probe having an optical resolution on the order of nanometers as a measuring probe in which a metal structure is embedded, and this plasmon-enhanced near-field probe is installed in a highly-efficient plasmon exciting unit to repeat approaching to and retracting from each measuring point on a sample with a low contact force, so that optical information and profile information of the surface of the sample are measured with a resolution on the order of nanometers, a high S/N ratio, and high reproducibility without damaging both of the probe and the sample.

    Abstract translation: 在扫描探针显微镜中,将纳米管和金属纳米粒子组合在一起构成具有纳米数量级的光学分辨率的等离子体增强型近场探针作为嵌入金属结构的测量探针,该等离子体激元 增强的近场探头安装在高效的等离子体激元单元中,以低接触力重复接近和缩回样品上的每个测量点,从而测量样品表面的光学信息和轮廓信息 分辨率为纳米级,高S / N比,高重现性,不损伤探头和样品。

    Scanning probe microscope and sample observing method using the same
    7.
    发明授权
    Scanning probe microscope and sample observing method using the same 有权
    扫描探针显微镜及使用其的样品观察方法

    公开(公告)号:US08272068B2

    公开(公告)日:2012-09-18

    申请号:US12523369

    申请日:2008-02-26

    CPC classification number: G01Q60/18 G01Q60/22

    Abstract: In a near-field scanning microscope using an aperture probe, the upper limit of the aperture formation is at most several ten nm in practice. In a near-field scanning microscope using a scatter probe, the resolution ability is limited to at most several ten nm because of the external illuminating light serving as background noise. Moreover, measurement reproducibility is seriously lowered by a damage or abrasion of a probe. Optical data and unevenness data of the surface of a sample can be measured at a nm-order resolution ability and a high reproducibility while damaging neither the probe nor the sample by fabricating a plasmon-enhanced near-field probe having a nm-order optical resolution ability by combining a nm-order cylindrical structure with nm-order microparticles and repeatedly moving the probe toward the sample and away therefrom at a low contact force at individual measurement points on the sample.

    Abstract translation: 在使用孔径探针的近场扫描显微镜中,实际上孔径形成的上限为至多几十nm。 在使用散射探针的近场扫描显微镜中,由于外部照明光作为背景噪声,分辨能力被限制在至多几十nm。 此外,通过探针的损伤或磨损,测量再现性被严重降低。 可以以nm级分辨能力和高再现性测量样品表面的光学数据和不均匀性数据,同时通过制造具有nm级光学分辨率的等离子体增强近场探针而不损害探针和样品 通过将nm级圆柱形结构与nm级微粒组合,并在样品上的各个测量点处以低接触力将探针重复地移动到样品并从中离开它们的能力。

    MEASURING APPARATUS HAVING NANOTUBE PROBE
    9.
    发明申请
    MEASURING APPARATUS HAVING NANOTUBE PROBE 审中-公开
    具有纳米管探针的测量装置

    公开(公告)号:US20090243637A1

    公开(公告)日:2009-10-01

    申请号:US12412113

    申请日:2009-03-26

    CPC classification number: G01R1/06761

    Abstract: An object of the present invention is to provide a measuring apparatus such as a conduction characteristics evaluation apparatus, a probe microscope, etc. having a nanotube probe, wherein the measuring apparatus is succeeded in reducing the electrical resistance of the carbon nanotube as well as the electrical resistance between the carbon nanotube and a metal substrate to improve electrical conduction characteristics of the nanotube probe and attain a uniform diameter, thus improving the measurement accuracy.In order to solve the above-mentioned problem, there is provided a conduction characteristics evaluation apparatus having a nanotube probe made of a nanotube coated by tiny fragments of graphene sheets to improve the wettability with respect to metal materials and then coated by a metal layer, or a conduction characteristics evaluation apparatus having a nanotube probe made of a metal-coated amorphous nanotube composed of tiny fragments of graphene sheets.

    Abstract translation: 本发明的目的是提供一种具有纳米管探针的导电特性评价装置,探针显微镜等测量装置,其中测量装置成功地降低了碳纳米管的电阻以及 碳纳米管和金属基板之间的电阻,以改善纳米管探针的导电特性并获得均匀的直径,从而提高测量精度。 为了解决上述问题,提供了一种具有纳米管探针的导电特性评价装置,该纳米管探针由石墨烯片的微小碎片涂覆的纳米管构成,以提高相对于金属材料的润湿性,然后用金属层涂覆, 或具有由石墨烯片的微小碎片构成的金属涂覆的无定形纳米管制成的纳米管探针的导电特性评价装置。

    Scanning probe microscope and sample observing method using the same
    10.
    发明授权
    Scanning probe microscope and sample observing method using the same 有权
    扫描探针显微镜及使用其的样品观察方法

    公开(公告)号:US08695110B2

    公开(公告)日:2014-04-08

    申请号:US13586754

    申请日:2012-08-15

    CPC classification number: G01Q60/18 G01Q60/22

    Abstract: In a near-field scanning microscope using an aperture probe, the upper limit of the aperture formation is at most several ten nm in practice. In a near-field scanning microscope using a scatter probe, the resolution ability is limited to at most several ten nm because of the external illuminating light serving as background noise. Moreover, measurement reproducibility is seriously lowered by a damage or abrasion of a probe. Optical data and unevenness data of the surface of a sample can be measured at a nm-order resolution ability and a high reproducibility while damaging neither the probe nor the sample by fabricating a plasmon-enhanced near-field probe having a nm-order optical resolution ability by combining a nm-order cylindrical structure with nm-order microparticles and repeatedly moving the probe toward the sample and away therefrom at a low contact force at individual measurement points on the sample.

    Abstract translation: 在使用孔径探针的近场扫描显微镜中,实际上孔径形成的上限为至多几十nm。 在使用散射探针的近场扫描显微镜中,由于外部照明光作为背景噪声,分辨能力被限制在至多几十nm。 此外,通过探针的损伤或磨损,测量再现性被严重降低。 可以以nm级分辨能力和高再现性测量样品表面的光学数据和不均匀性数据,同时通过制造具有nm级光学分辨率的等离子体增强近场探针而不损害探针和样品 通过将nm级圆柱形结构与nm级微粒组合,并在样品上的各个测量点处以低接触力将探针重复地移动到样品并从中离开它们的能力。

Patent Agency Ranking