Abstract:
A reversible hydrogen storage alloy for electrochemical and thermal hydrogen storage having excellent kinetics and improved performance at low temperatures and excellent cycle life. The compositions of the hydrogen storage alloy is modified to achieve excellent performance at low temperatures and excellent cycle life via non-stoichiometric hydrogen storage alloy compositions.
Abstract:
A method of activating a hydrogen storage alloy. The method includes the step of contacting the hydrogen storage alloy with an aqueous solution of an alkali metal hydroxide where the concentration of the alkali metal hydroxide is at least about 42 weight percent. The method produces a hydrogen storage alloy with increased surface area.
Abstract:
A resealable, ventable hydrogen impermeable cover assembly for sealing a rechargeable, metal hydride hydrogen storage alloy electrochemical cell. The cover assembly includes, inter alia, a multilayered vent septum comprising at least one layer of a substantially hydrogen impermeable, highly compressible material and at least one layer of a high durometer hardness material exhibiting low pressure hysteresis.
Abstract:
A hydrogen storage alloy having an atomically engineered microstructure that both physically and chemically absorbs hydrogen. The atomically engineered microstructure has a predominant volume of a first microstructure which provides for chemically absorbed hydrogen and a volume of a second microstructure which provides for physically absorbed hydrogen. The volume of the second microstructure may be at least 5 volume % of atomically engineered microstructure. The atomically engineered microstructure may include porous micro-tubes in which the porosity of the micro-tubes physically absorbs hydrogen. The micro-tubes may be at least 5 volume % of the atomically engineered microstructure. The micro-tubes may provide proton conduction channels within the bulk of the hydrogen storage alloy and the proton conduction channels may be at least 5 volume % of the atomically engineered microstructure.
Abstract:
A method of making a catalyst. The method comprises the step of leaching a portion of the bulk of an alloy. The alloy may be a hydrogen storage alloy.
Abstract:
The present invention relates to rechargeable nickel metal hydride batteries and methods for making the same. More particularly, the present invention relates to rechargeable nickel metal hydride batteries having a precharge in the negative electrode sufficient for oxidation prevention in the negative electrode. The present invention discloses a nickel metal hydride battery, wherein the precharge of the negative electrode may be supplied by a variety of sources. The positive active material of the positive electrode may have positive active particles, such as nickel hydroxide, having a precursor coating that incorporates cobalt material capable of forming a conductive network. Sources other than cobalt-containing materials in the positive electrode include hydrogen gas provided directly to the negative active material, nickel aluminum mixed with the negative active material, the etching of the negative active material with an alkaline solution and borohydride chemically charging the negative active material. Preferably, a majority of the precharge of the negative electrode is supplied by sources other than cobalt-containing materials in the positive electrode.
Abstract:
A method of making a catalyst. The method comprises the step of leaching alloy particles. Preferably, the alloy particles are hydrogen storage alloy particles.
Abstract:
A process for producing hydrogen gas is disclosed. In one embodiment, the process for produces hydrogen gas from biofuel reformation. The process includes the step of reacting a biofuel with a naturally occurring base.
Abstract:
A modified A2B7 type hydrogen storage alloy having reduced hysteresis. The alloy consists of a base AxBy hydrogen storage alloy, where A includes at least one rare earth element and also includes magnesium, B includes at least nickel, and the atomic ratio of x to y is between 1:2 and 1:5. The base alloy is modified by the addition of at least one modifier element which has an atomic volume less than about 8 cm3/mole, and is added to the base alloy in an amount sufficient to reduce the absorption/desorption hysteresis of the alloy by at least 10% when compared with the base alloy.
Abstract translation:具有降低的滞后的改性的A 2 N 2 B 7型储氢合金。 该合金由一种碱金属的储氢合金组成,其中A包括至少一种稀土元素,并且还包括镁,B至少包括镍,和 x与y的原子比为1:2与1:5之间。 通过添加至少一种具有小于约8cm 3 / mole的原子体积的改性剂元素来改变基础合金,并且以足以减少吸收的量加入到基础合金中 /解吸滞后与基础合金相比至少10%。
Abstract:
A fuel cell. The anode of the fuel cell comprises a hydrogen oxidation catalyst comprising a finely divided metal particulate. The metal particulate may be a nickel and/or nickel alloy particulate having a particle size less than about 100 Angstroms.