Abstract:
A solenoid valve used in a positive pressure has a yoke divided into two portions around the housing. A flange surface is formed on one end of the bobbin of the valve and is directly attached to a chassis. The flange surface and the valve seat of the solenoid valve are molded integrally with the bobbin.
Abstract:
A control device for an electric vehicle stopping at a slope road which reduces a power consumption of the electric motor when the vehicle is stopping at the slope road with the generation of a drive torque. The device judges the stopping state of the vehicle at the slope road when a condition that a throttle opening degree is not zero, that the drive torque is not zero, and that a vehicle speed is zero continues for a predetermined time, applies a hydraulic pressure P relative to wheel cylinder, and decreases the drive torque outputting to the motor to be zero. The device judges a release of the stopping state at the slope road when a condition that a throttle opening degree becomes greater than a throttle opening degree under the vehicle stopping state at the slope road, recovers the drive torque, and gradually releases an application of the hydraulic pressure to the wheel cylinder.
Abstract:
The invention is directed to an electromagnetic valve unit which comprises a valve body, on which a plurality of electromagnetic valves mounted in parallel with one another, with the terminals of the valves exposed. A frame, which has a connector portion with through holes defined therein, is secured to the valve body for enclosing the electromagnetic valves. A conductive member is integrally formed with connector terminals and contact pins which are connected with respective terminals of the electromagnetic valves. A cover is provided for covering the conductive member. The connector terminals of the conductive member are pressed into through holes which are defined in the connector portion of the frame, and the contact pins of the conductive member are electrically connected with the respective terminals of the electromagnetic valves.
Abstract:
A fluid pressure controlling solenoid valve is disclosed for producing an oil pressure which drives a brake pressure controlling piston in a manner such that an brake oil pressure applied to the brakes associated with wheels in response to the depression of a brake pedal is adjusted to a low value in order to prevent a high slip ratio of wheels with respect to a road surface and to a high value when the slip ratio is reduced. A switching solenoid valve is assembled on the upper end face of an intermediate member formed of a magnetic material and having a first fluid path extending therethrough from its upper to its lower end face for selectively connecting the first fluid path with a reduced pressure input port and a high pressure input port. A switching solenoid valve which opens or closes the connection between the first fluid path and the output port is assembled on the lower end face of the intermediate member. The solenoid valve has an orifice of a reduced diameter which maintains a communication between the first fluid path and the output port.
Abstract:
An object of the invention is to increase driving force of driving wheels at starting a vehicle, when the vehicle runs on a μ-sprit road. At first, a road surface for a driving wheel is detected, which has a higher coefficient of friction than that of a road surface for the other driving wheel. An operation for controlling grounded load of the driving wheels is carried out during a period, in which differential rotations of the driving wheels are limited. The grounded load of the driving wheel which is traveling on a high-μ road is increased, whereas the grounded load of the other driving wheel which is traveling on a low-μ road is decreased.
Abstract:
A brake control device for vehicles includes a master cylinder, a plurality of wheel cylinders, and an anti-lock control apparatus disposed between the master cylinder and the wheel cylinders of at least one hydraulic circuit. The anti-lock control apparatus includes a hydraulic pump, a reservoir and a changeover device which is selectively changed over at least between a first condition which permits an increase in the hydraulic pressure of the wheel cylinders of at least one hydraulic circuit and a second condition which permits an decrease in the hydraulic pressure of the wheel cylinders of at least one hydraulic circuit in response to the locking condition of the road wheels. The hydraulic pump includes a housing, a slidable piston device for defining a pump chamber which is communicated with the reservoir and the changeover device at a side of one end thereof in the housing, an inlet check valve disposed between the pump chamber and the reservoir for permitting fluid communication from the reservoir to the pump chamber and for interrupting fluid communication from the pump chamber to the reservoir, an outlet check valve disposed between the pump chamber and the changeover device for permitting fluid communication from the pump chamber to the changeover device and for interrupting fluid communication from the changeover device to the pump chamber, and a piezo element for reciprocating the piston device disposed at the other end of the piston device.
Abstract:
The present invention is directed to a vehicle braking system having a stroke simulator and a servo device, which includes a pressure generator for generating a hydraulic braking pressure, a wheel brake cylinder operatively mounted on each wheel of the vehicle, a pressure control valve device which is disposed in a passage for communicating the pressure generator with the wheel brake cylinder, to control the hydraulic braking pressure supplied to the wheel brake cylinder, and an electronic controller for controlling at least in response to an amount of operation of the brake pedal. A master cylinder is provided for communicating with the wheel brake cylinder and supplying the hydraulic braking pressure into it in response to operation of the brake pedal, when at least one of the pressure generator, the pressure control valve device and the electronic controller is abnormal. A stroke simulator is connected to the master cylinder, and arranged to allow the brake pedal to advance in response to the amount of operation of the brake pedal. And, a servo device is provided for assisting the master cylinder to operate when at least one of the pressure generator, the pressure control valve device and the electronic controller is abnormal.
Abstract:
A bobbin 7 around which a solenoid 6 is wound is connected to an electronic control unit 1 fixed to a base plate portion 3c through a connection terminal 11 penetrating a connection hole 2 and a guide hole 4 whose one end portion is fixed to a bobbin 7 and is connected to an end portion of a solenoid 6 and other end portion is connected to the connection hole 2, a hook portion 3d is engaged into a hole 10b so that a yoke 8 is supported, an electromagnetic-force generating portion 5 is assembled to a casing 3, gaps 18 and 21 are formed between the yoke 8 and the bobbin 7 so that the yoke 8 is made to be movable with respect to the bobbin 7 in the axial direction of the sleeve 13 and also in a direction perpendicular to the axial direction of the sleeve 13. When the casing 3 and the valve housing 14 are assembled, the sleeve 13 is smoothly inserted into the electromagnetic-force generating portion 5, and the yoke 8 is pressed and urged to the valve housing 14 by a ring spring 12.
Abstract:
An electromagnetic valve of the present invention includes a housing 11,13, a fluid passage 12 provided in the housing 11,13, a valve member 18,21 for opening and closing the fluid passage 12, and a one way valve 25 having a valve member 26 and a valve seat 19b. The one way valve 25 is provided at one end of the fluid passage 12. The one way valve 25 is installed integrally within the housing 11,13 to facilitate installation in a small space.