Abstract:
The present invention pertains to methods for the synthesis and cloning of full-length cDNA, or cDNA fragments, that correspond to the complete sequence of 5'-ends of mRNA molecules. The method of the present invention comprises contacting RNA with a cDNA synthesis primer which can anneal to RNA, a suitable enzyme which possesses reverse transcriptase activity, and a template switching oligonucleotide under conditions sufficient to permit the template-dependent extension of the primer to generate an mRNA-cDNA hybrid. The template switching oligonucleotide hybridizes to the CAP site at the 5'-end of the RNA molecule and serves as a short, extended template for CAP-dependent extension of the 3'-end of the ss cDNA that is complementary to the template switching oligonucleotide. The resulting full-length ss cDNA includes the complete 5'-end of the RNA molecule as well as the sequence complementary to the template switching oligonucleotide, which can then serve as a universal priming site in subsequent amplification of the cDNA.The subject invention also pertains to the template switching oligonucleotides that can be used according to the subject method. Kits containing the template switching oligonucleotide are also included within the scope of the present invention.
Abstract:
A method of combating a somatosensory disorder in a subject, comprising administering to the subject an effective amount of a composition comprising bupranolol and/or pharmaceutically acceptable derivative(s) thereof. Compositions useful for such administration are described, including salts, esters, solvates, etc. of tert-butyl[3-(2-chloro-5-methylphenoxy)-2-hydroxypropyl]amine, in which such salt, ester, solvate, etc. compound is in enantiomeric excess or homoenantiomeric in the R isomer thereof, or is formulated with racemic mixtures of the R and S stereoisomers of the salts, esters, solvates, etc. of tert-butyl[3-(2-chloro-5-methylphenoxy)-2-hydroxypropyl]amine. Combination therapy compositions of opioid receptor agonists and such compounds are also described. A method is disclosed of referential genotypic screening of candidate subjects in connection with therapeutic intervention using the compositions of the disclosure to combat the somatosensory disorder.
Abstract:
The present invention relates to a method of preventing or treating chronic pain comprising administering to a subject, in an amount/number effective to elicit, sustain or potentiate an inflammatory process, a pro-inflammatory compound, myeloid leukocyte cells or a substance that increases the number or activity of myeloid leukocyte cells.
Abstract:
A method of combating a somatosensory disorder in a subject, comprising administering to the subject an effective amount of a composition comprising bupranolol and/or pharmaceutically acceptable derivative(s) thereof. Compositions useful for such administration are described, including salts, esters, solvates, etc. of tert-butyl[3-(2-chloro-5-methylphenoxy)-2-hydroxypropyl]amine, in which such salt, ester, solvate, etc. compound is in enantiomeric excess or homoenantiomeric in the R isomer thereof, or is formulated with racemic mixtures of the R and S stereoisomers of the salts, esters, solvates, etc. of tert-butyl[3-(2-chloro-5-methylphenoxy)-2-hydroxypropyl]amine. Combination therapy compositions of opioid receptor agonists and such compounds are also described. A method is disclosed of referential genotypic screening of candidate subjects in connection with therapeutic intervention using the compositions of the disclosure to combat the somatosensory disorder.
Abstract:
Methods of predicting effective pharmacological therapies for a subject afflicted with a somatosensory disorder by determining a genotype of the subject with or without determination of psychosocial and/or neurological assessments of the subject are provided. Methods of predicting susceptibility of a subject to develop somatosensory disorders by determining a genotype of the subject with or without determination of psychosocial and/or neurological assessments of the subject are further provided.
Abstract:
Described are compositions and methods which allow for the efficient addition of a defined sequence at the 3'-end of a full-length cDNA in the course of first-strand cDNA synthesis from an mRNA template. A cDNA synthesis primer that is capable of annealing to mRNA is used to prime the first strand synthesis reaction. An oligonucleotide that is linked to the 5'-end of the mRNA serves as a short, extended template such that when the reverse transcriptase enzyme reaches the 5'-end of the mRNA, the enzyme switches templates and proceeds to transcribe through the end of the linked oligonucleotide. As a result, the single-stranded cDNA product which corresponds to the full-length mRNA, will have at the 3'-end a defined sequence which is complementary to the linked oligonucleotide. A conservative element in the oligonucleotide sequence responsible for this reaction can include 3 to 5 guanylic acid residues at the 3'-end of the oligonucleotide. The subject invention provides for the increased synthesis of full-length cDNA from mRNA templates. The full-length cDNA prepared according to the present invention can then be amplified using PCR or cloned using standard procedures.
Abstract:
The subject invention pertains to novel materials and methods for suppressing amplification of particular DNA fragments during polymerase chain reaction (PCR). The PCR suppression method uses novel adapters that are ligated to the end of a DNA fragment prior to PCR amplification. Upon melting and annealing, single-stranded DNA fragments having self-complementary adapters at the 5'- and 3'-ends of the strand can form suppressive "pan-like" double-stranded structures that suppress amplification of the fragments during PCR. The subject method offers improved specificity and sensitivity of PCR amplification of a target DNA and does not require target DNA sequence information. The subject invention can be adapted to a variety of highly useful PCR techniques and applications.
Abstract:
The subject invention pertains to novel materials and methods for suppressing amplification of particular DNA fragments during polymerase chain reaction (PCR). The PCR suppression method uses novel adapters that are ligated to the end of a DNA fragment prior to PCR amplification. Upon melting and annealing, single-stranded DNA fragments having self-complementary adapters at the 5'- and 3'-ends of the strand can form suppressive "pan-like" double-stranded structures that suppress amplification of the fragments during PCR. The subject method offers improved specificity and sensitivity of PCR amplification of a target DNA and does not require target DNA sequence information. The subject invention can be adapted to a variety of highly useful PCR techniques and applications.