摘要:
An organic light emitting diode display includes a substrate having organic light emitting diodes thereon. A thin film encapsulation layer is formed on the substrate such that the thin film encapsulation layer covers the organic light emitting diodes. A nonorganic layer is formed under the thin film encapsulation layer along the edge of the thin film encapsulation layer.
摘要:
An organic light emitting display device includes a substrate; an organic light emitting unit formed on the substrate; and a sealing unit which seals the organic light emitting unit, wherein the sealing unit is formed by alternately stacking at least one first thin film and at least one second thin film, the first thin film being formed to surround a portion of the second thin film.
摘要:
A method of joining a flexible layer and a support includes forming a first metal layer on one surface of the flexible layer, forming a second metal layer on one surface of the support, cleaning the first metal layer and the second metal layer, and joining the first metal layer to the second metal layer, such that the first metal layer is between the flexible layer and the second metal layer.
摘要:
An organic light emitting display device and a manufacturing method of forming an inorganic layer formed on the top of the sealing film with nitride are disclosed. In one embodiment, the organic light emitting display device includes: i) a substrate on which at least one organic light emitting diode is formed and ii) a sealing film stacked with at least one organic film and inorganic film and sealing the organic light emitting diode, wherein the top of the sealing film is formed of an inorganic film formed of nitride.
摘要:
A holder for fabricating an organic light emitting display comprises: a holder main body; and a plurality of supporters provided on opposite sides of the holder main body; wherein each supporter has a ‘┐’-shape and comprises a side wall having a predetermined height, and a supporting plate bent from the side wall. The supporting plate is formed with a plurality of stepped parts to support a substrate, a film tray and a mask, to hold the substrate, the film tray and the mask while the substrate, the film tray and the mask are being transported, and to prevent a pattern from being distorted, thereby transporting and processing a substrate, a film tray and a mask in a single chamber at the same time.
摘要:
The present invention provides a catalytic enhanced chemical vapor deposition (CVD) apparatus capable of maximizing efficiency of gas use to 80% or more, and obtaining a uniform thin film by efficiently arranging filaments mounted on a shower head of the catalytic enhanced CVD apparatus, thereby uniformly decomposing a deposition source gas. The present invention also provides a method for fabricating an organic electroluminescent device with an inorganic film formed through the catalytic enhanced CVD apparatus.
摘要:
A method of manufacturing an organic light emitting device by using a facing target sputtering apparatus is provided. The method includes forming a first electrode on a substrate; forming an organic film on the first electrode; and forming a second electrode on the organic film by using a facing target sputtering apparatus. Accordingly, an electrode film is formed on the organic light emitting device at a low temperature without deterioration of the electrode film due to plasma, it is possible to improve light emitting efficiency and electro-optical characteristics of the organic light emitting device.
摘要:
An inductively coupled plasma chemical vapor deposition apparatus comprises a reaction gas spray nozzle capable of evenly spraying reaction gas onto a rectangular substrate, a radio frequency (RF) antenna capable of uniformly forming a plasma source in a rectangular shape, and a rectangular mask maintained at a low temperature so as to uniformly form a thin film on the rectangular substrate used for a flat panel display device.
摘要:
A system and method automatically analyzes and manages loss factor data of test processes in which a great number of IC devices are tested as a lot with a number of testers. The lot contains a predetermined number of identical IC devices, and the lot test process is performed sequentially according to a predetermined number of test cycles. The system include a means for verifying test results for each of the test cycles and for determining whether or not a re-test is to be performed and an IC device loading/unloading means for loading IC devices to be tested and contained in the lot to a test head and for unloading the tested IC devices from the test head by sorting the tested IC devices according to the test results. The system also includes raw data generating means for generating raw data on the basis of time data occurring when the test process is performed; data calculating means for calculating testing time data, index time data based on the raw data, and loss time data; data storage means for storing the raw data and the calculated data; and data analyzing and outputting means for analyzing the raw data and the calculated data according to the lots, the plurality of testers and the IC device loading/unloading means and for outputting the analyzed output through an user interface. The test system includes testers, a server system and terminal computer, and the server system is provided with data storage means for integrally manipulating time data generated by the testers according to lots and test cycles and for storing manipulated time data.
摘要:
Methods of fabricating an organic light emitting device using plasma and/or thermal decomposition are provided. An insulating layer is formed by reacting first and second radicals. The first radical is formed by passing a first gas through a plasma generating region and a heating body, and the second radical is formed by passing a second gas through the heating body. The methods improve the characteristics of the resulting insulating layer and increase the use efficiency of the source gas by substantially decomposing the source gas. The insulating layer can be a passivation layer formed on an organic light emitting device. The methods use plasma apparatuses such as an inductively coupled plasma chemical vapor deposition (ICP-CVD) apparatuses or plasma enhanced chemical vapor deposition (PECVD) apparatuses.