摘要:
A composite article comprises a substrate having at least a substrate surface and a graded-composition coating disposed on a substrate surface. The composition of the coating material varies substantially continuously across its thickness. The coating reduces the transmission rates of oxygen, water vapor, and other chemical species through the substrate such that the composite article can be used effectively as a diffusion barrier to protect chemically sensitive devices or materials. An organic light-emitting device incorporates such a composite article to provide an extended life thereto.
摘要:
A composite magnet wire includes, in an exemplary embodiment, a metal wire and a coating applied to an outer surface of the wire. The coating includes a polyimide polymer and a plurality of alumina nano particles dispersed in the polyimide polymer. The alumina nano particles have a surface treatment applied to outer surfaces of the alumina nano particles, where the surface treatment includes a phenyl-silane. The composite magnet wire has a thermal degradation temperature index of at least 300° C. as calculated in accordance with ASTM E1641 or D2307.
摘要:
The invention provides a method of bonding a sensor to a surface comprising the steps of applying a thermoplastic film to a first surface of the sensor. The first surface of the sensor is contacted with a surface of an object to be monitored, wherein the composition effectively bonds the sensor to the object surface at a temperature up to approximately 250° C. The invention also provides a method of bonding a sensor to a surface comprising the steps of applying a thermoplastic film to a surface area of an object to be monitored. The first surface of a sensor is contacted with the object surface area, wherein the film effectively bonds the sensor to the object surface at a temperature up to approximately 250° C.
摘要:
A composite article comprises a substrate having at least a substrate surface and a graded-composition coating disposed on a substrate surface. The composition of the coating material varies substantially continuously across its thickness. The coating reduces the transmission rates of oxygen, water vapor, and other chemical species through the substrate such that the composite article can be used effectively as a diffusion barrier to protect chemically sensitive devices or materials. An organic light-emitting device incorporates such a composite article to provide an extended life thereto.
摘要:
A composite article comprises a substrate having at least a substrate surface and a graded-composition coating disposed on a substrate surface. The composition of the coating material varies substantially continuously across its thickness. The coating reduces the transmission rates of oxygen, water vapor, and other chemical species through the substrate such that the composite article can be used effectively as a diffusion barrier to protect chemically sensitive devices or materials. An organic light-emitting device incorporates such a composite article to provide an extended life thereto.
摘要:
A method of forming a hydrogenated amorphous germanium carbon (α-GeCx:H) film on a surface of an infrared (IR) transmissive material such as a chalcogenide is provided. The method includes positioning an IR transmissive material in a reactor chamber of a parallel plate plasma reactor and thereafter depositing a hydrogenated amorphous germanium carbon (α-GeCx:H) film on a surface of the IR transmissive material. The depositing is performed at a substrate temperature of about 130° C. or less and in the presence of a plasma which is derived from a gas mixture including a source of germanium, an inert gas, and optionally hydrogen. Optical transmissive components, such as IR sensors and windows, that have improved abrasion-resistance are also provided.
摘要翻译:提供了在红外(IR)透射材料如硫族化物的表面上形成氢化无定形锗碳(α-GeC x H x:H)膜的方法。 该方法包括将IR透射材料定位在平行板等离子体反应器的反应室中,然后在IR透射材料的表面上沉积氢化的无定形锗碳(α-GeC x H x H:H)膜 。 在约130℃或更低的衬底温度下和在源自包含锗源,惰性气体和任选的氢的气体混合物的等离子体存在下进行沉积。 还提供了具有改善的耐磨性的光学透射组件,例如IR传感器和窗户。
摘要:
A composite article comprises a substrate having at least a substrate surface and a graded-composition coating disposed on a substrate surface. The composition of the coating material varies substantially continuously across its thickness. The coating reduces the transmission rates of oxygen, water vapor, and other chemical species through the substrate such that the composite article can be used effectively as a diffusion barrier to protect chemically sensitive devices or materials. An organic light-emitting device incorporates such a composite article to provide an extended life thereto.
摘要:
The present invention provides tough, high modulus, low density thermoset polyurethane compositions which are useful in general as, for example, cast structural materials and in a preferred embodiment can be cured directly onto an aircraft engine fan blade, thereby providing a lighter blade, without concomitant loss in structural integrity or blade performance due to, for example, resistance to foreign object impacts and fuel efficiency. In a preferred embodiment, the composition is comprised of bis-amine compounds reacted with isocyanate-functional polyether polymers in the presence of hollow polymeric microspheres. The thermoset polymer compositions are formed by casting into a mold which is formed by a cavity within the metallic or composite fan blade or guide vane in the form of a pocket and a removable caul sheet. After the elastomeric polyurethane foam is injected through at least one injector port into the mold, the foam is cured.
摘要:
A composite magnet wire includes, in an exemplary embodiment, a metal wire and a coating applied to an outer surface of the wire. The coating includes a polyimide polymer and a plurality of alumina nano particles dispersed in the polyimide polymer. The alumina nano particles have a surface treatment applied to outer surfaces of the alumina nano particles, where the surface treatment includes a phenyl-silane. The composite magnet wire has a thermal degradation temperature index of at least 300° C. as calculated in accordance with ASTM E1641 or D2307.
摘要:
A method includes contacting a treatment composition including a permanganic acid to a surface of a first substrate to form a treated substrate surface, wherein the first substrate comprises a polyarylenesulfide. The method further includes adhesively bonding the treated substrate surface to a second substrate surface. An associated kit is also provided