Abstract:
A substrate processing apparatus includes first and second polishing units for polishing a peripheral portion of a substrate, a primary cleaning unit for cleaning the substrate, a secondary cleaning and drying unit for drying the substrate cleaned in the primary cleaning unit, and a measurement unit for measuring the peripheral portion of the substrate. The measurement unit includes a mechanism for measurement required for polishing in the first and second polishing units, such as a diameter measurement mechanism, a cross-sectional shape measurement mechanism, or a surface condition measurement mechanism.
Abstract:
The present invention provides a polishing apparatus and a polishing method capable of calculating outside diameters of rolls of a polishing tape on a polishing-tape supply reel and a polishing-tape recovery reel and capable of calculating a remaining amount of the polishing tape and a consumption of the polishing tape from the outside diameters of the rolls. This polishing apparatus includes a polishing-tape supply reel (46), a polishing head (44), a polishing-tape drawing-out mechanism G1, and a polishing-tape supply and recovery mechanism (45) configured to recover the polishing tape (43) from the polishing-tape supply reel (46) via the polishing head (44). The polishing-tape supply and recovery mechanism (45) includes a motor Mb adapted to apply a torque to the polishing-tape supply reel (46) so as to exert a predetermined tension on the polishing tape (43) traveling through the polishing head (44), and a rotation angle detector REa adapted to detect a rotation angle of the polishing-tape supply reel (46).
Abstract:
A polishing method can obtain a good polishing profile which, for example, will not cause peeling of a semiconductor layer from a silicon substrate. The polishing method includes: positioning a polishing head at a position above a polishing start position in an edge portion of a rotating substrate; lowering a polishing tool of the polishing head until the polishing tool comes into contact with the polishing start position in the edge portion of the rotating substrate and a pressure between the polishing tool and the polishing start position reaches a set pressure; allowing the polishing tool to stay at the polishing start position for a predetermined amount of time; and then moving the polishing head toward a peripheral end of the substrate while keeping the polishing tool in contact with the edge portion of the rotating substrate at the set pressure.
Abstract:
A device for polishing the peripheral edge part of a semiconductor wafer includes a wafer stage for holding the wafer, a wafer stage unit including devices for rotating the wafer stage, causing the wafer stage to undergo a rotary reciprocating motion within the same plane as the surface of the wafer stage, and moving the wafer stage parallel to the surface, a notch polishing part for polishing the notch on the wafer and a bevel polishing part for polishing the beveled part of the wafer. Pure water is supplied to the wafer to prevent it from becoming dry as it is transported from the notch polishing part to the bevel polishing part.
Abstract:
A polishing apparatus polishes a top edge portion and/or a bottom edge portion of a substrate accurately and uniformly. The polishing apparatus includes a rotary holding mechanism 3 configured to hold the substrate W horizontally and to rotate the substrate W; and at least one polishing head 30 disposed near the peripheral portion of the substrate. The polishing head 30 has at least one protrusion 51a, 51b extending along a circumferential direction of the substrate W, and the polishing head 30 is configured to press a polishing surface of a polishing tape 23 by the protrusion 51a, 51b against the peripheral portion of the substrate W from above or below.
Abstract:
A polymer and a treating agent (such as a surface-treating agent) are provided that have excellent characteristics in such properties as water repellency, oil repellency, antifouling property and charge controlling property. The polymer contains a structural unit derived from fluorosilsesquioxane having an addition polymerizable group, or contains a structural unit derived from fluorosilsesquioxane having an addition polymerizable group and a structural unit derived from organopolysiloxane having an addition polymerizable group. The treating agent contains the polymer. An article treated with the treating agent is also provided.
Abstract:
A device for polishing the peripheral edge part of a semiconductor wafer includes a wafer stage for holding the wafer, a wafer stage unit including devices for rotating the wafer stage, causing the wafer stage to undergo a rotary reciprocating motion within the same plane as the surface of the wafer stage, and moving the wafer stage parallel to the surface, a notch polishing part for polishing the notch on the wafer and a bevel polishing part for polishing the beveled part of the wafer. Pure water is supplied to the wafer to prevent it from becoming dry as it is transported from the notch polishing part to the bevel polishing part.
Abstract:
A polishing apparatus according to the present invention is suitable for use in polishing a periphery of a substrate such as a semiconductor wafer. The polishing apparatus includes a holding section configured to hold the workpiece, a polishing head configured to bring the polishing tape into contact with the workpiece, a supply reel configured to supply the polishing tape to the polishing head, a rewind reel configured to rewind the polishing tape that has contacted the workpiece, and a swinging mechanism configured to cause the polishing head to perform a swinging motion with its pivot lying on a predetermined point.
Abstract:
The object of the present invention is to provide a new kind of silicon compound having an ester-type organic functional group and a new method for providing a T8-silsesquioxane compound having a hydroxyl group by using said silicon compound as the starting material. A silicon compound represented by formula (1) is obtained through the production process characterized by using a silicon compound represented by formula (2). wherein: in formula (1), each of seven R1 group is independently selected from the group consisting of hydrogen, alkyl, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl and A2 is a hydroxyl-terminal organic functional group, and in formula (2), each of R1 group is the same as R1 in formula (1), and A1 is an organic functional group containing an acyloxy group.
Abstract:
The object of the present invention is to provide a new kind of silicon compound having an ester-type organic functional group and a new method for providing a T8-silsesquioxane compound having a hydroxyl group by using said silicon compound as the starting material.A silicon compound represented by formula (1) is obtained through the production process characterized by using a silicon compound represented by formula (2). wherein: in formula (1), each of seven R1 group is independently selected from the group consisting of hydrogen, alkyl, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl and A2 is a hydroxyl-terminal organic functional group, and in formula (2), each of R1 group is the same as R1 in formula (1), and A1 is an organic functional group containing an acyloxy group.