Abstract:
A liquid crystal display module includes a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates, an illuminating device disposed behind the liquid crystal display panel, an upper frame, and a lower frame. The upper and lower frames fix therebetween the liquid crystal display panel and the illuminating device as an integral unit in cooperation with each other. The upper frame is provided with at least one recessed portion in a sidewall thereof, the at least one recessed portion is set back in a direction parallel with major surfaces of the substrates from the sidewall, and a bottom of the at least one recessed portion is provided with a tapped hole adapted for engagement with a screw for mounting the liquid crystal display module to external equipment.
Abstract:
An image pickup device by which the size of a device main body can be reduced and the assembly process can be easily automated. In the image pickup device, a wiring (118) and relay terminals (115, 116, 117, 119) for electrically connecting a shutter driving section (114) with a shutter driver (112) are integrally formed with a solid wring board (101) and a lens tube (106), respectively. An electric terminal (120) of the shutter driving section (114) for driving a shutter (107), i.e. an actuator, is electrically connected with a printed board (108) through the wiring (118) of the lens tube (106) and the wiring of the solid wiring board (101). Thus, the shutter driving section (114) is electrically connected with the shutter driver (112) which controls the shutter driving section (114) mounted on the printed board (108).
Abstract:
Provided is a tuner module including a tuner module main body involving a tuner board, a first leg projected from the tuner module main body and to be inserted into a first hole formed on a circuit board main body, a second leg projected from the tuner module main body and to be inserted into a second hole formed on the circuit board main body, the second leg being shorter than the first leg, and a signal terminal projected from the tuner board and to be inserted into a third hole formed on the circuit board main body, the signal terminal being shorter than the second leg. A taper is formed on at least tip end parts of the first leg and the second leg.
Abstract:
A charge compensation device according to this invention is for suppressing charging of a wafer when the wafer is irradiated with a beam from a beam generation source unit. The charge compensation device comprises at least one first arc chamber having at least one first extraction hole and a second arc chamber having at least one second extraction hole faced on the reciprocal swinging beam of the predetermined scan range. A first arc voltage is applied to the first arc chamber to generate first plasma in the first arc chamber. The generated first plasma is extracted from the first arc chamber and introduced into the second arc chamber. Second plasma is produced in the second arc chamber, and second extracted plasma from the second arc chamber forms a plasma bridge between the second extraction hole and the reciprocal swinging beam.
Abstract:
A charge compensation device according to this invention is for suppressing charging of a wafer when the wafer is irradiated with a beam from a beam generation source unit. The charge compensation device comprises at least one first arc chamber having at least one first extraction hole and a second arc chamber having at least one second extraction hole faced on the reciprocal swinging beam of the predetermined scan range. A first arc voltage is applied to the first arc chamber to generate first plasma in the first arc chamber. The generated first plasma is extracted from the first arc chamber and introduced into the second arc chamber. Second plasma is produced in the second arc chamber, and second extracted plasma from the second arc chamber forms a plasma bridge between the second extraction hole and the reciprocal swinging beam.
Abstract:
A liquid crystal display module includes a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates, an illuminating device disposed behind the liquid crystal display panel, an upper frame, and a lower frame. The upper and lower frames fix therebetween the liquid crystal display panel and the illuminating device as an integral unit in cooperation with each other. The upper frame is provided with at least one recessed portion in a sidewall thereof, the at least one recessed portion is set back in a direction parallel with major surfaces of the substrates from the sidewall, and a bottom of the at least one recessed portion is provided with a tapped hole adapted for engagement with a screw for mounting the liquid crystal display module to external equipment.
Abstract:
An object of the invention is to provide a display device that allows its useful life to be prolonged without letting the user of the device conscious of changes in the display state of the display device, and the power consumption to be prevented from increasing, and the usable time without charging to be prevented from being shortened even when a light emitting display device is used. The display device is driven by a power source chargeable by connection with an external power source and includes a display portion (4), a display control portion (31) that switches between an inverted display state and a non-inverted display state of said display portion (4), and a power source detection portion (5) that detects a connection with said external power source. The display control portion switches between the inverted display state and non-inverted display state of said display portion (4) when said power source detection portion (5) detects a connection with said external power source.
Abstract:
A liquid crystal display monitor includes a liquid crystal display module having a liquid crystal display panel and an illuminating device fixed between first and second frames. The rear surface of the second frame is provided with a tapped hole engaging with a screw, and a thickness of the second frame in the vicinity of the tapped hole is greater than that of the remainder of the second frame. The illuminating device includes plural line light sources behind the panel and a reflector behind the light sources. The reflector is shaped to have portions protruding toward the panel between the light sources and to have portions convex toward the second frame, and the tapped hole is provided in portions of the second frame corresponding to the portions of the reflector protruding toward the panel.
Abstract:
An object of the invention is to provide a display device that allows its useful life to be prolonged without letting the user of the device conscious of changes in the display state of the display device, and the power consumption to be prevented from increasing, and the usable time without charging to be prevented from being shortened even when a light emitting display device is used. The display device is driven by a power source chargeable by connection with an external power source and includes a display portion (4), a display control portion (31) that switches between an inverted display state and a non-inverted display state of said display portion (4), and a power source detection portion (5) that detects a connection with said external power source. The display control portion switches between the inverted display state and non-inverted display state of said display portion (4) when said power source detection portion (5) detects a connection with said external power source.