Abstract:
A process for treating earth materials such as rock heaps to prevent acid rock drainage therefrom is disclosed. First, the oxygen concentration in the gas-phase of the rock heap is decreased, that is, displaced and/or depleted. This first step may be accomplished physically, chemically or biologically. Then, the gas-phase oxygen concentration in the heap is maintained at a low level. This second step may be provided for in a self-sustaining manner, like, for example, by covering the rock heap with soil and vegetation so that acid rock drainage is prevented indefinitely. Alternatively, the density of the gas-phase of the rock heap may be increased, and maintained at an elevated level indefinitely. The process is applicable to waste heaps from mining and industrial operations such as power generation and minerals processing, and to rubble collections in open and closed mines.
Abstract:
A process for in situ immobilization of metals in waste stack affected zones including a waste stack and any adjacent boundary zone. One form of the process includes: (a) forming at least one treatment passageway which extends within the waste stack affected zone; (b) injecting a treatment liquid into the treatment passageway; said treatment liquid including at least one microbe nutrient which is capable of sustaining activity of the at least one microbe; (c) providing at least one microbe in sufficient proximity to the treatment passageway to receive treatment liquid therefrom; said at least one microbe being capable of growing in the presence of said treatment liquid; said at least one microbe also being capable of producing microbial sulfides which are sulfide by-products of microbial activity in the waste stack affected zone; (d) reacting the microbial sulfides in situ with metal ions or metal-containing compounds contained in said waste stack affected zone to form metal sulfides; (e) reducing solubility of the metal ions or metal-containing compounds contained in the waste stack affected zone as a result of forming the metal sulfides; and (f) inhibiting the migration rate of metal ions or metal-containing compounds within or from the waste stack affected zone.
Abstract:
A process for treating earth materials such as rock heaps to prevent acid rock drainage therefrom is disclosed. First, the oxygen concentration in the gas-phase of the rock heap is decreased, that is, displaced and/or depleted. This first step may be accomplished physically, chemically or biologically. Then, the gas-phase oxygen concentration in the heap is maintained at a low level. This second step may be provided for in a self-sustaining manner, like, for example, by covering the rock heap with soil and vegetation so that acid rock drainage is prevented indefinitely. Alternatively, the density of the gas-phase of the rock heap may be increased, and maintained at an elevated level indefinitely. The process is applicable to waste heaps from mining and industrial operations such as power generation and minerals processing, and to rubble collections in open and closed mines.
Abstract:
A method for treating in situ large bodies of water contaminated with heavy metals and having varying density stratas to immobilize the contaminant metals is disclosed. The method, or process for in situ immobilization of metals is focused on treating large bodies of water having metals therein that are also adjacent a border of soil or earthen materials in an attempt to immobilize the metals from penetrating through the soil. Initially, the density mean of the body of water is determined, which is densest typical at regions at or approaching 4 degrees C. The process includes introducing a treatment substance that has a density greater than that of the density means into the body of water, providing at least one microbe proximate or in the body of water, producing microbial sulfides arising from the initial microbe placement, causing microbial sulfides to react in situ with metal ions or metal containing compounds located within the body of water, reducing the solubility of the metal ions by forming metal sulfides, and inhibiting the migration rate of the metal ions or other metal containing compounds within or from the soils or earthen materials as they settle out of the water. The treatment substance typically includes at least one microbe nutrient to sustain activity of the microbes added thereto. The microbial activity yields microbial sulfides that react with the contaminants within the water to form the metal sulfides.
Abstract:
A method for treating (in situ) large bodies of water contaminated with heavy metals and having varying density stratas to immobilize the contaminant metals is disclosed. The method, or process for (in situ) immobilization of metals is focused on treating large bodies of water having metals therein that are also adjacent a border of soil or earthen materials in an attempt to immobilize the metals from penetrating through the soil. The method is also able to treat the soil water boundary within the pit lake to provide additional immobilization. The pit lakes can include open pit lakes, subterranean mine lakes, flowing streams and the like. The method is also able to treat an abandoned mine prior to the filling of the mine with water. Initially, the density mean of the body of water is determined, which is densest typical at regions at or approaching 4 degrees C. The process includes introducing a treatment substance that has a density greater than that of the density means into the body of water, providing at least one microbe proximate or in the body of water, producing microbial sulfides arising from the initial microbe placement, causing microbial sulfides to react (in situ) with metal ions or metal containing compounds located within the body of water, reducing the solubility of the metal ions by forming metal sulfides, and inhibiting the migration rate of the metal ions or other metal containing compounds within or from the soils or earthen materials as they settle out of the water.
Abstract:
A process for in situ immobilization of metals in waste stack affected zones including a waste stack and any adjacent boundary zone. One form of the process includes: (a) forming at least one treatment passageway which extends within the waste stack affected zone; (b) injecting a treatment liquid into the treatment passageway; said treatment liquid including at least one microbe nutrient which is capable of sustaining activity of the at least one microbe; (c) providing at least one microbe in sufficient proximity to the treatment passageway to receive treatment liquid therefrom; said at least one microbe being capable of growing in the presence of said treatment liquid; said at least one microbe also being capable of producing microbial sulfides which are sulfide by-products of microbial activity in the waste stack affected zone; (d) reacting the microbial sulfides in situ with metal ions or metal-containing compounds contained in said waste stack affected zone to form metal sulfides; (e) reducing solubility of the metal ions or metal-containing compounds contained in the waste stack affected zone as a result of forming the metal sulfides; and (f) inhibiting the migration rate of metal ions or metal-containing compounds within or from the waste stack affected zone.