摘要:
A system for reforming diesel fuel into hydrogen including feeds for water and diesel fuel, a supercritical water (SCW) reactor in fluid communication with the water feed and the diesel fuel, at least one pre-heater in thermal communication with the water feed, the diesel fuel feed that is configured to heat water from the water feed and diesel fuel from the diesel fuel feed to a predetermined temperature equal to or greater than the critical temperature of water before the water and the diesel fuel are mixed, a water-gas shift (WGS) reactor, and a hydrogen capturing system, where the SCW reactor reforms the diesel fuel into a synthesis gas comprising a mixture of hydrogen and carbon monoxide and outputs the synthesis gas, the synthesis gas output by the SCW reactor is fed into the WGS reactor which converts the carbon monoxide into carbon dioxide and hydrogen and outputs an output gas including a higher percentage of hydrogen to carbon monoxide compared to the synthesis gas, and the hydrogen in the output gas is captured by the hydrogen capturing system.
摘要:
A method of dispensing a prescribed medication, in pill form, and verifying that the medication dispensed is the prescribed medication. A medication identified from a prescription (P) is dispensed into a container (C). An image of the dispensed pills is taken and processed to obtain a set of characteristic features of the pill. These features include the coloration, shape, size, and any surface features of the pills. These features are then automatically compared with those of all the pills which can be dispensed by a dispensing apparatus (10). If a pill can be uniquely identified as the correct pill, the container of pills is accepted. Otherwise, the container is rejected. If, as a result of the processing, a determination cannot be made, the container is provisionally rejected and is subsequently inspected by a pharmacist to determine if the prescription is correctly filled.
摘要:
A non-imaging traffic sensing system (10) employs three separate detectors (D1-D3) each positioned above a roadway (R) and spatially separated along the roadway. The detectors detect light reflected off the roadway surface. Each detector has its own field of view (FOV) of the roadway surface and a separate footprint (F1-F3) is defined on the surface by intersection of the respective fields of view with the surface. A disturbance passing over the roadway changes the amount of reflected light sensed by the detectors and the detectors generate respective signals indicative of the amount of reflected light they receive. A first pair of the detectors (D1, D3) measure the speed of a passing disturbance. A second pair of the detectors (D1, D2) identify shadows so to eliminate their effects. The footprints defined by the fields of view of the second detector pair generally overlap. A processor (24) processes signals from the first detector pair to determine the speed of the disturbance. The processor further processes signals from the second detector pair to determine the disturbance's height. The disturbance is classified as vehicular if the height exceeds a predetermined threshold, but as a shadow if less than the threshold. This allows the effects of shadows on the roadway to be readily identified and distinguished from vehicle movement.
摘要:
A traffic incident detection system (10) includes both the collection and analysis of traffic data and employs a time-indexed traffic anomaly detection algorithm which partitions time into categories of “type of day,” and “time of day”. Using this partition, a fuzzy neuromorphic, unsupervised learning algorithm calibrates fuzzy sets as “normal” and “abnormal” for a plurality of traffic descriptors. Fuzzy composition techniques are used, on a per traffic lane basis, to combine multiple traffic descriptors in order to determine membership in a “normal” or “abnormal” lane status. Each lane status is then combined to determine the overall status of a road segment. Initial training of the algorithm occurs during the first few weeks after a sensor (12) is installed. On-line background training continues thereafter to continually tune and track seasonal changes affecting system performance.
摘要:
Apparatus (10) and a method for visually monitoring a scene and detecting motion of an intruder within the scene. A camera (C) continually views the scene and produces a representative signal. A processor (12) processes the signal and produces an image (f2) represented by the signal. This image is compared with a similar image (f1) of the scene from a previous point in time. Segments of the later image which differ from segments of the earlier image are identified. A discriminator (14) evaluates these segments to determine if the differences result simply from lighting changes, or the movement of an intruder within the scene. If caused by an intruder, an appropriate indication is provided. An algorithm is employed by which differences from one image to another caused by lighting changes, the effects of motion of objects established within the scene, noise, and aliasing effects are identified so as not to produce false alarms. Those remaining segments are further evaluated to determine if there is an intruder present within the scene.
摘要:
A tracking system (10) is for use in a weapons system (W). The tracking system is used to assist a gunner (G) in designating and tracking a target which the gunner can fire upon using a weapon under his control. A laser (12) operating at a wavelength beyond the visible band (i.e., 70.7 um) projects a laser beam (B) at the target which illuminates a portion of the target struck by the beam. The laser is boresighted with the weapon and moves with it as the gunner tracks the target. A curved window is interposed between the laser and the target. The window (16) passes a portion of the incident laser beam on it for the laser beam to strike the target. The window also reflects a portion of the laser beam. The amount of the laser beam passing through the window is substantially greater than the portion reflected. The reflected portion of the laser beam reflects at an angle (.theta.) with respect to the incident beam. A sensing element (26) upon which the reflected portion of the beam impinges emits a visible spot of light. The sensing element is at, or near, the focal point of the window. A visible, virtual image of the target, which is at, or near, infinity, is now created. This visible image is observable by the gunner. The gunner maintains the laser beam on the target by moving his weapon as the target moves. Movement of the laser beam produces a corresponding movement of the virtual image.
摘要:
A supercritical water reformer (SCWR) and methods for using supercritical water to convert hydrocarbons, particularly hydrocarbon fuels such as diesel fuel or gasoline, into carbonaceous gases and hydrogen. The synthesis gas stream generated by the fuel reforming reaction can then be further refined to increase hydrogen content, and the resultant hydrogen can be utilized to power fuel cells.
摘要:
A light detecting device, particularly one which indicates illumination by a laser, and methods for its use. The device includes at least two light detectors which each comprise a light sensor and a light control filter. The light control filter includes microlouvers arranged so that the microlouvers of the two different light detectors are at different angles. The light detecting device may be used to determine the direction to the source of the light detected. Further, two or more devices may be combined into a system that allows for a user to determine the distance to the source of light, particularly laser light emitted by a laser rangefinder. The system is designed to be functional under combat or other battlefield conditions and relatively simple and inexpensive to manufacture.
摘要:
A bulk mail processing system (10) conveys bulk mail containers (C) from a receiving station (R) at which the container is placed on a conveyor (12) to an unloading station (D) at which the contents of the container are dumped. A video camera (22) obtains an image of the container which is transmitted to a processor (24). The image is processed to determine if residual mail (M) is left in the container after it is emptied. A mechanism (18) removes the container from the conveyor, empties the container, and then returns the container back to the conveyor. A controller (20) controls operation of the emptying mechanism. The controller is responsive to an input from the processor that all the contents of a container have been removed to replace the empty container on the conveyor. The controller is further responsive to an input from the processor that there is residual mail left in the container to have the mechanism re-empty the container and so insure container is completely empty before being returned to the conveyor.
摘要:
This invention is a video security system (10) and a method for visually monitoring a scene and detecting motion of an intruder within the scene. A camera (C) continually views the scene and produces a representative signal. A processor (12) processes the signal and produces an image (f2) represented by the signal. This image is compared with a similar image (f1) of the scene from a previous point in time. Segments of the later image which differ from segments of the earlier image are identified. A discriminator (14) evaluates these segments to determine if the differences result simply from lighting changes, or the movement of an intruder within the scene as indicated by surface differences between segments of the respective differences. If caused by an intruder, an appropriate indication is provided. An algorithm is employed by which differences from one image to another caused by global or local lighting changes effects are identified so as not to produce false alarms.