System and method for detecting traffic anomalies
    1.
    发明授权
    System and method for detecting traffic anomalies 失效
    用于检测交通异常的系统和方法

    公开(公告)号:US06177885B1

    公开(公告)日:2001-01-23

    申请号:US09185321

    申请日:1998-11-03

    CPC classification number: G08G1/0104

    Abstract: A traffic incident detection system (10) includes both the collection and analysis of traffic data and employs a time-indexed traffic anomaly detection algorithm which partitions time into categories of “type of day,” and “time of day”. Using this partition, a fuzzy neuromorphic, unsupervised learning algorithm calibrates fuzzy sets as “normal” and “abnormal” for a plurality of traffic descriptors. Fuzzy composition techniques are used, on a per traffic lane basis, to combine multiple traffic descriptors in order to determine membership in a “normal” or “abnormal” lane status. Each lane status is then combined to determine the overall status of a road segment. Initial training of the algorithm occurs during the first few weeks after a sensor (12) is installed. On-line background training continues thereafter to continually tune and track seasonal changes affecting system performance.

    Abstract translation: 交通事故检测系统(10)既包括交通数据的收集和分析,又采用时间索引的交通异常检测算法,将时间划分为“一天的类型”和“时间”。 使用该分区,模糊神经形态,无监督学习算法将模糊集合校准为多个业务描述符的“正常”和“异常”。 使用模糊组合技术,在每个车道基础上组合多个交通描述符,以便确定“正常”或“异常”车道状态的会员资格。 然后将每个车道状态组合以确定道路段的总体状态。 在安装传感器(12)后的最初几周内,算法的初始训练发生。 在线后台培训继续不断调整和跟踪影响系统性能的季节性变化。

Patent Agency Ranking