Abstract:
A drive device (11) for driving a wheel (7) of an electrically powered vehicle having an electric machine (12) and a transmission unit. The transmission unit has a spur gear transmission (14) and a planetary transmission (13) which, when viewed in the direction of the flow of force during a traction operation, is positioned on the output side of the electric machine (12) in the sequence of the planetary transmission (13) and then the spur gear transmission (14).
Abstract:
A drive device (11) for driving a wheel (7) of an electrically powered vehicle having an electric machine (12) and a transmission unit. The transmission unit has a spur gear transmission (14) and a planetary transmission (13) which, when viewed in the direction of the flow of force during a traction operation, is positioned on the output side of the electric machine (12) in the sequence of the planetary transmission (13) and then the spur gear transmission (14).
Abstract:
A wheel suspension element for a motor vehicle which comprises a supporting structure (1) for an axle of a motor vehicle and at least a rod for guiding, with the rod, at least an articulated wheel carrier (2) which can be connected to the supporting structure (1). The supporting structure (1) is formed from a fiber composite material. The rod of the wheel suspension element is designed as an elastic spring rod (3, 4) and is formed from a fiber composite material as one element with the supporting structure (1).
Abstract:
A bearing mechanism for a transverse leaf spring that can be mounted in the region of an axle of a vehicle. The bearing mechanism has an outer bearing shell device and insertion devices which are at least partially encompassed by the outer bearing shell device and comprise layer elements with different stiffnesses. In the assembled state, the insertion devices are each disposed between the outer bearing shell device and the transverse leaf spring. In the region of a support surface of the transverse leaf spring, a recess is formed for each of the insertion devices in which the insertion devices engage in a form-locking manner. The insertion devices are each formed in the contact surfaces facing the support surfaces of the transverse leaf spring, having at least one receiving device into which, in the assembled state of the insertion devices, a region of the transverse leaf spring engages.
Abstract:
The present invention provides a process for preparing 2-methyltetrahydrofuran by one-stage hydrogenation of furfural with a hydrogen-comprising gas in the presence of a supported catalyst which comprises at least one noble metal from groups 8, 9 and/or 10 of the periodic table of the elements.
Abstract:
The present invention provides a process for preparing 2-methyltetrahydrofuran by one-stage hydrogenation of furfural with a hydrogen-comprising gas in the presence of a structured bed of at least one copper catalyst and at least one catalyst which comprises at least one noble metal from groups 8, 9 and/or 10 of the periodic table of the elements applied on a support material.
Abstract:
The present invention provides a process for preventing fumaric acid deposits in the preparation of maleic anhydride, comprising the following steps:a) absorption of a C4-dicarboxylic acid or of a derivative from a crude product mixture into an organic solvent or water as an absorbent,b) removal of the C4-dicarboxylic acid or of a derivative from the absorbent,the absorbent thus recovered being catalytically hydrogenated fully or partly and recycled fully or partly into the absorption stage (a).
Abstract:
A die for producing pressed, fiber-reinforced plastic components, as well as a method for producing the plastic component, and the plastic component itself. The plastic components comprising at least two structural parts which overlap one another a pressing direction such that the die comprises at least one upper die portion formed with a pressing unit for applying a pressing force in the pressing direction, and at least one lower die portion which cooperates with the upper die portion to form a cavity in which the plastic component is formed. A die insert is fitted in the die and can move by and with the upper die portion and is designed to transmit the pressing force to the at least one structural part of the plastic component which is overlapped by the other structural part of the plastic component in the pressing direction.
Abstract:
The present invention relates to porous metallic frameworks comprising at least one at least bidentate organic compound coordinated to at least one metal ion, wherein the at least one at least bidentate organic compound is derived from 2,5-furandicarboxylic acid or 2,5-thiophenedicarboxylic acid. The present invention further relates to shaped bodies comprising these frameworks, processes for producing them and their use, in particular for the storage and separation of gases.
Abstract:
In a process for preparing a supported hydrogenation catalyst with increased hydrogenation activity, which comprises a hydrogenating metal and/or an oxide of a hydrogenating metal on an Al2O3-containing support material, said calcined supported hydrogenation catalyst is treated before or after the final shaping thereof and before use thereof in the hydrogenation with a base solution having a pH of >10 at a temperature in the range from 20 to 120° C. for 1 to 300 hours.
Abstract translation:在含有Al 2 O 3的载体材料上制备含氢化金属和/或氢化金属的氢化物的氢化活性增加的负载型氢化催化剂的方法中,所述煅烧的负载氢化催化剂在其最终成型之前或之后进行处理 并且在使用之前,在温度为20〜120℃的pH为> 10的碱溶液中氢化1〜300小时。