摘要:
The present invention relates to a method for forming a calcium-based carrier particle consisting of the calcium-based material, an active, with or without a surface modification, a stabilizing agent, and the related composition. The calcium-based particle is illustrated by the general formula Cax(PO4)y(OH)zR and may also include a silica or silica oxide substituent. R is an active or actives such as an organic or inorganic molecule that includes markers, amines, thiols, epoxies, organosilicones, organosilanes, sulfates, and water soluble agents and, as needed, a surface modification, S, which may be either organic or inorganic. A stabilizing agent may be necessary to maintain dispersion of the particles in aqueous media. Examples of a surface modifying material and stabilizing agents are inorganic salts of aluminum and boron or organic materials such as organosilanes or low molecular weight polymers. As such, the particle can be used in a variety of applications including any of a variety of high temperature, at acidic, neutral, or basic pH, or pressure environments. The carrier particles have applications as diverse as papermaking, water treatment, chemical tracing, personal care, microbiological control, oil recovery, delivery of polymers, for example.
摘要:
A uniform suspension of ceramic powder and method for making the same. The suspension is prepared by mixing finely divided ceramic powder in an aqueous carrier fluid, combining with a dispersing agent, and alternatively, an organic binder when forming a slip. The ceramic powder has an average particle size of about 0.5 micron or less and is present in the suspension in a loading of up to 30% by volume of the total solids in suspension. A passivating agent is present in the carrier fluid in an amount of 0.5 to 5% by weight of the ceramic powder present for suspension and slip respectively. After the addition of a dispersant, the suspension has a Bingham yield point of less than 230 dynes/cm2 and an apparent viscosity of less than 3000 cps. A green layer produced from the slip exhibits a pore size of less than 0.5 micron.
摘要:
A method for creating a patterned thin film of a high surface energy material on a substrate comprising the steps of creating a photomask pattern on the substrate using photolithography, providing an oppositely charged surface on the substrate and photomask, if such does not exist, from that of particles of the high surface energy material, removing the photomask and exposing the substrate to an aqueous colloidal suspension of particles composed of the high surface energy material to adsorb seed particles onto the surface of the substrate, or removing the photomask after adsorbing seed particles to the surface, and then depositing a uniform thin film of the high surface energy material by chemical vapor deposition onto the seeded substrate.
摘要:
A method is provided for improving the scratch or surface wear resistance of substrates by embedding discrete, hard particles within the surface layer of the substrate. Discrete, hard particles are applied to the substrate surface and then embedded within and bonded to the surface layer of the substrate by softening the substrate surface layer by either thermal or solvent means. Suitable substrate materials include thermoplastics, thermoset plastics, polymers, glass, soft metals, and composites. Suitable hard particles include diamond, silicon dioxide, aluminum oxide, cubic boron nitride, boron carbide, silicon carbide, silicon nitride, tantalum carbide, titanium carbide, titanium nitride, tungsten carbide, and zirconia alloys containing at least one phase stabilization additive selected from the group yttrium, hafnium, calcium, magnesium, and cesium. Scratch resistant substrates or articles having discrete, hard particles embedded within the surface layer of the substrate or article are also provided. These substrates or articles essentially have the surface wear characteristics of the hard particles or material embedded within the surface layer. Thus, it is possible to prepare plastic materials or articles having significantly improved scratch or surface wear resistance without significantly increasing the weight or external dimensions of the plastic materials or articles.
摘要:
Nano-encapsulated photosensitizers and their use in the treatment of tumors and/or imaging is described. Preferably, the photosensitizers are encapsulated in a calcium phosphate nanoparticle (CPNP). Encapsulating the PS in a CPNP increases the half-life of the PS, increases absorption of the PS into the target cell tissue, increases the photostability of the PS, increases the photoefficiency of the PS, increases in vivo retention of the PS, or combinations thereof, ultimately making it a highly efficacious agent for use in photodynamic therapy, imaging target tissues, vessels, or tumors, and/or detecting or locating tumors.
摘要:
The present invention relates to a method for forming a calcium-based carrier particle consisting of the calcium-based material, an active, with or without a surface modification, a stabilizing agent, and the related composition. The calcium-based particle is illustrated by the general formula Cax(PO4)y(OH)zR and may also include a silica or silica oxide substituent. R is an active or actives such as an organic or inorganic molecule that includes markers, amines, thiols, epoxies, organosilicones, organosilanes, sulfates, and water soluble agents and, as needed, a surface modification, S, which may be either organic or inorganic. A stabilizing agent may be necessary to maintain dispersion of the particles in aqueous media. Examples of a surface modifying material and stabilizing agents are inorganic salts of aluminum and boron or organic materials such as organosilanes or low molecular weight polymers. As such, the particle can be used in a variety of applications including any of a variety of high temperature, at acidic, neutral, or basic pH, or pressure environments. The carrier particles have applications as diverse as papermaking, water treatment, chemical tracing, personal care, microbiological control, oil recovery, delivery of polymers, for example.
摘要:
Nano-encapsulated photosensitizers and their use in the treatment of tumors and/or imaging is described. Preferably, the photosensitizers are encapsulated in a calcium phosphate nanoparticle (CPNP). Encapsulating the PS in a CPNP increases the half-life of the PS, increases absorption of the PS into the target cell tissue, increases the photostability of the PS, increases the photoefficiency of the PS, increases in vivo retention of the PS, or combinations thereof, ultimately making it a highly efficacious agent for use in photodynamic therapy, imaging target tissues, vessels, or tumors, and/or detecting or locating tumors.
摘要:
Non-aggregating resorbable calcium phosphosilicate nanoparticles (CPNPs) are bioconjugated to targeting molecules that are specific for particular cells. The CPNPs are stable particles at normal physiological pH. Chemotherapy and imaging agents may be integrally formed with the CPNPs so that they are compartmentalized within the CPNPs. In this manner, the agents are protected from interaction with the environment at normal physiological pH. However, once the CPNPs have been taken up, at intracellular pH, the CPNPs dissolve releasing the agent. Thus, chemotherapeutic or imaging agents are delivered to specific cells and permit the treatment and/or imaging of those cells. Use of the bioconjugated CPNPs both limits the amount of systemic exposure to the agent and delivers a higher concentration of the agent to the cell. The methods and principals of bioconjugating CPNPs are taught by examples of bioconjugation of targeting molecules for breast cancer, pancreatic cancer, and leukemia.
摘要:
The present invention provides a method for the synthesis of unagglomerated, highly dispersed, stable core/shell nanocomposite particles comprised of preparing a reverse micelle microemulsion that contains nanocomposite particles, treating the microemulsion with a silane coupling agent, breaking the microemulsion to form a suspension of the nanocomposite particles by adding an acid/alcohol solution to the microemulsion that maintains the suspension of nanocomposite particles at a pH of between about 6 and 7, and simultaneously washing and dispersing the suspension of nanocomposite particles, preferably with a size exclusion HPLC system modified to ensure unagglomeration of the nanocomposite particles. The primary particle size of the nanocomposite particles can range in diameter from between about 1 to 100 nm, preferably from between about 10 to 50 nm, more preferably about 10 to 20 nm, and most preferably about 20 nm.
摘要:
The present invention relates to a method for forming a silica-based particle or composite consisting of a silica-based material, an active, with or without a surface modification, and the related composition. The silica-based particle is illustrated by the formula (SiO2)x(OH)yRzSt, whereby R is an active or actives such as an organic or inorganic molecule that includes markers, amines, thiols, epoxies, organosilicones, organosilanes, and water soluble agents and, optionally, a surface modifier, S, which may be either organic, polymeric, or inorganic. Examples of a surface modifying material are inorganic salts of aluminum and boron or organic materials such as organosilanes or low molecular weight polymers. As such, the particle can be used in a variety of applications including any of a variety of high temperature, at acidic, neutral, or basic pH, or pressure environments. The composites have applications as diverse as papermaking, water treatment, chemical tracing, personal care, microbiological control, and delivery of polymers, for example. With regard to papermaking, the particle provides retention and drainage performance while delivering whitener, or OBA, other functional additives and serves an additive tracker.
摘要翻译:本发明涉及一种由二氧化硅基材料,活性物质,有或没有表面改性剂形成的二氧化硅基颗粒或复合材料的形成方法及相关组合物。 二氧化硅基颗粒由式(SiO 2)x(OH)y R z St表示,其中R是活性或活性物质,例如有机或无机分子,其包括标记,胺,硫醇,环氧化物,有机硅氧烷,有机硅烷和水溶性 试剂和任选的表面改性剂S,其可以是有机的,聚合的或无机的。 表面改性材料的实例是铝和硼的无机盐或有机材料如有机硅烷或低分子量聚合物。 因此,颗粒可以用于各种应用,包括各种高温,酸性,中性或碱性pH或压力环境中的任何一种。 复合材料具有例如造纸,水处理,化学追踪,个人护理,微生物控制和聚合物递送等多种应用。 关于造纸,颗粒提供保留和排水性能,同时提供增白剂或OBA其他功能性添加剂,并提供添加剂追踪器。