摘要:
The subject invention is directed to methods of treating cardiac pacing dysfunction by administering HCN genes, alone or in combination with other genes.
摘要:
A cardiac ischemic protection system and method for conditioning a patient's heart is provided. The method can include detecting acute myocardial infarction, angina pectoris, silent ischemia, or stunning and providing closed-loop dyssynchronous pacing to the patient's heart to precondition and/or postcondition the patient's heart in order to reduce ischemic damage.
摘要:
Electrical medical leads having active fixation electrodes, particularly helix electrodes intended to be screwed into body tissue, e.g., the heart, are disclosed having selectively applied insulation to optimize exposed electrode surface area and dispose the exposed electrode surface area toward tissue that is less traumatized by injury caused by screwing in the fixation helix. In a preferred fabrication method, an outer helical surface is masked by contact with a masking tube while a dielectric coating is applied to the inner helical surface of the coil turns of the helix, and the masking tube is removed when the dielectric coating has set. In one variation, at least one aperture is formed through the masking tube sidewall exposing an area of the outer helical surface thereby interrupting the uninsulated outer helical electrode.
摘要:
A cardiac ischemic protection system and method for conditioning a patient's heart is provided. The method can include detecting acute myocardial infarction, angina pectoris, silent ischemia, or stunning and providing closed-loop dyssynchronous pacing to the patient's heart to precondition and/or postcondition the patient's heart in order to reduce ischemic damage.
摘要:
Electrical medical leads having active fixation electrodes, particularly helix electrodes intended to be screwed into body tissue, e.g., the heart, are disclosed having selectively applied insulation to optimize exposed electrode surface area and dispose the exposed electrode surface area toward tissue that is less traumatized by injury caused by screwing in the fixation helix. In a preferred fabrication method, an outer helical surface is masked by contact with a masking tube while a dielectric coating is applied to the inner helical surface of the coil turns of the helix, and the masking tube is removed when the dielectric coating has set. In one variation, at least one aperture is formed through the masking tube sidewall exposing an area of the outer helical surface thereby interrupting the uninsulated outer helical electrode.
摘要:
The present invention relates generally to medical devices; in particular and without limitation, to unique electrodes and/or electrical lead assemblies for stimulating cardiac tissue, muscle tissue, neurological tissue, brain tissue and/or organ tissue; to electrophysiology mapping and ablation catheters for monitoring and selectively altering physiologic conduction pathways; and, wherein said electrodes, lead assemblies and catheters optionally include fluid irrigation conduit(s) for providing therapeutic and/or performance enhancing materials to adjacent biological tissue, and wherein each said device is coupled to or incorporates nanostructure or materials therein. The present invention also provides methods for fabricating, deploying, and operating such medical devices.
摘要:
A medical fluid delivery system includes an implantable medical lead including a fixation element adapted to secure the lead to a tissue site and a fluid delivery device including a tissue piercing distal tip; the device is adapted to pass through a proximal port, a lumen and a distal port of the lead. The system further includes means for adjusting a position of the device distal tip with respect to the lead distal port.
摘要:
Methods for optimizing the atrio-ventricular (A-V) delay for efficacious delivery of cardiac resynchronization therapy. In CRT devices, the programmed A-V delay starts with detection of electrical activity in the right atrium (RA). Thus, a major component of the A-V delay is the time required for inter-atrial conduction time (IACT) from the RA to the LA. This IACT can be measured during implantation as the time from the atrial lead stimulation artifact to local electrograms in a coronary sinus (CS) catheter. Assuming that the beginning of LA contraction closely corresponds with the beginning of LA electrical activity, the optimal AV delay should be related to the time between the start of RA electrical activity and the start of LA electrical activity plus the duration of LA atrial contraction. Thus ‘during atrial pacing’ the IACT measured at implantation is correlated with the echocardiographically defined optimal paced AV delay (PAV).
摘要:
A method for fabricating an implantable medical electrode includes roughening the electrode substrate, applying an adhesion layer, and depositing a valve metal oxide coating over the adhesion layer under conditions optimized to minimize electrode impedance and post-pulse polarization. The electrode substrate may be a variety of electrode metals or alloys including titanium, platinum, platinum-iridium, or niobium. The adhesion layer may be formed of titanium or zirconium. The valve metal oxide coating is a ruthenium oxide coating sputtered onto the adhesion layer under controlled target power, sputtering pressure, and sputter gas ratio setting optimized to minimize electrode impedance and post-pulse polarization.
摘要:
Electrical medical leads having active fixation electrodes, particularly helix electrodes intended to be screwed into body tissue, e.g., the heart, are disclosed having selectively applied insulation to optimize exposed electrode surface area and dispose the exposed electrode surface area toward tissue that is less traumatized by injury caused by screwing in the fixation helix. In a preferred fabrication method, an outer helical surface is masked by contact with a masking tube while a dielectric coating is applied to the inner helical surface of the coil turns of the helix, and the masking tube is removed when the dielectric coating has set. In one variation, at least one aperture is formed through the masking tube sidewall exposing an area of the outer helical surface thereby interrupting the uninsulated outer helical electrode.