Abstract:
A liquid crystal display device includes: a first substrate; a first electrode on a first face of the first substrate; a second substrate opposed to the first substrate; a second electrode on a first face of the second substrate, the second electrode corresponding to the first electrode; and a liquid crystal structure between the first substrate and the second substrate, the liquid crystal structure including liquid crystal capsules.
Abstract:
An organic light-emitting display apparatus includes an organic light-emitting device including a pixel electrode, an opposite electrode facing the pixel electrode, and an organic light-emitting layer interposed between the pixel electrode and the opposite electrode; a first polarization plate disposed on a surface of the organic light-emitting device, the organic light-emitting device being configured to emit light through the first polarization plate; a second polarization plate facing the first polarization plate; and an optical compensation member between the first polarization plate and the second polarization plate.
Abstract:
A liquid crystal display (LCD) includes: a first substrate; a second substrate facing the first substrate; an electrode portion formed on at least one of the first substrate and the second substrate, and configured to generate an electric field between the first substrate and the second substrate; and a liquid crystal film positioned between the first substrate and the second substrate, and at least one liquid crystal and an associated liquid crystal space in the liquid crystal film.
Abstract:
A display device includes a main display unit and a liquid crystal display cover coupled with the main display unit. The liquid crystal display cover is movable between open and closed positions with respect to the main display unit. The liquid crystal display cover includes a lower substrate, an upper substrate, and a liquid crystal layer. The lower substrate includes a plurality of first pixels thereon. The upper substrate faces the lower substrate and has a first common electrode thereon. The liquid crystal layer is between the lower substrate and the upper substrate.
Abstract:
A method of driving a display device by using a pixel voltage corresponding to a difference between a common voltage and a data voltage comprises: operations of charging the pixel voltage by the common voltage and the data voltage having opposite polarities; and discharging the pixel voltage in a period where the polarity of the common voltage is reversed.
Abstract:
A liquid crystal display device, including a first substrate, a thin-film transistor on the first substrate and including a gate electrode, a gate insulating layer, an active layer, and source and drain electrodes, an organic insulating layer on the thin-film transistor, a first electrode layer on the organic insulating layer, the first electrode layer extending between respective portions of the organic insulating layer to contact the source and drain electrode, a black layer on the first electrode layer and the organic insulating layer, a liquid crystal layer on the black layer, a second electrode layer on the liquid crystal layer, and a second substrate on the second electrode layer. The liquid crystal may include a cholesteric liquid crystal layer or a polymer network liquid crystal (PNLC).
Abstract:
A panel a gate line on a first substrate, a gate insulating layer covering the gate line, a semiconductor layer on the gate insulating layer, a data line intersecting the gate line and including a source electrode and a drain electrode facing the source electrode on the semiconductor layer, a connection assistant separated from the data line, a passivation layer covering the semiconductor layer and including contact holes exposing the connection assistant and a pixel electrode including a plurality of sub-pixel electrodes and formed on the passivation layer. The sub-pixel electrodes are connected to the connection assistant through the contact holes, are electrically connected to each other through the connection assistant and at least one of the sub-pixel electrodes is electrically connected to the drain electrode.
Abstract:
Disclosed is a picture quality testing apparatus and method of a liquid crystal display which can measure at least any one of gray inversion and color shift. An apparatus for testing the picture quality of a liquid crystal display includes a liquid crystal display for displaying a test pattern, an image pickup device for photographing the test pattern of the liquid crystal display, a measurer for measuring the transmittance of the test pattern photographed by the image pickup device, and a rotating means for rotating at least one of the liquid crystal display and the image pickup device while the image pickup device photographs the test pattern.
Abstract:
In a stereoscopic image conversion panel for enhancing display quality and a stereoscopic image display apparatus having the panel, the stereoscopic display panel includes lower and upper transparent substrates, lower and upper transparent electrodes, and a liquid crystal lens layer. The lower and upper transparent substrates face each other. The lower transparent electrodes are disposed on the lower transparent substrate, formed along a first direction, and formed substantially in parallel with each other along a second direction. The upper transparent electrodes are disposed on the upper transparent substrate, formed along the second direction, and formed substantially in parallel with each other along the first direction. The liquid crystal lens layer is disposed between the upper and lower transparent substrates, and a longitudinal arrangement direction of liquid crystal molecules of the liquid crystal lens layer is changed by an electric field to have a predetermined refractive index. Therefore, a refracted incident light produces a stereoscopic image for enhancing display quality.
Abstract:
A method of manufacturing a microlens substrate includes forming a microlens sheet of a photosensitive resin including a lenticular lens array on a lower substrate, exposing the microlens sheet to light through a mask dividing the lenticular lens array into a plurality of portions respectively corresponding to a plurality of cells and defining a boundary between each of the plurality of cells, planarizing a portion of the microlens sheet corresponding to the boundary, and forming a seal line on the planarized boundary to combine the lower substrate with a corresponding upper substrate.