-
公开(公告)号:US07629270B2
公开(公告)日:2009-12-08
申请号:US11212503
申请日:2005-08-24
Applicant: Johan Swerts , Hilde De Witte , Jan Willem Maes , Christophe F. Pomarede , Ruben Haverkort , Yuet Mei Wan , Marinus J. De Blank , Cornelius A. Van Der Jeugd , Jacobus Johannes Beulens
Inventor: Johan Swerts , Hilde De Witte , Jan Willem Maes , Christophe F. Pomarede , Ruben Haverkort , Yuet Mei Wan , Marinus J. De Blank , Cornelius A. Van Der Jeugd , Jacobus Johannes Beulens
IPC: H01L21/31
CPC classification number: H01L21/28194 , C23C16/345 , C23C16/452 , C23C16/45523 , C23C16/45578 , C23C16/515 , H01L21/02381 , H01L21/02422 , H01L21/02532 , H01L21/0262 , H01L21/28202 , H01L21/28211 , H01L21/3141 , H01L21/3144 , H01L21/3145 , H01L21/3148 , H01L21/3185 , H01L29/518
Abstract: A nitrogen precursor that has been activated by exposure to a remotely excited species is used as a reactant to form nitrogen-containing layers. The remotely excited species can be, e.g., N2, Ar, and/or He, which has been excited in a microwave radical generator. Downstream of the microwave radical generator and upstream of the substrate, the flow of excited species is mixed with a flow of NH3. The excited species activates the NH3. The substrate is exposed to both the activated NH3 and the excited species. The substrate can also be exposed to a precursor of another species to form a compound layer in a chemical vapor deposition. In addition, already-deposited layers can be nitrided by exposure to the activated NH3 and to the excited species, which results in higher levels of nitrogen incorporation than plasma nitridation using excited N2 alone, or thermal nitridation using NH3 alone, with the same process temperatures and nitridation durations.
Abstract translation: 通过暴露于远程激发的物质而活化的氮前体被用作形成含氮层的反应物。 远程激发的物质可以是例如已经在微波自由基发生器中激发的N 2,Ar和/或He。 在微波自由基发生器的下游和衬底的上游,受激物质的流动与NH 3流混合。 激发的物质激活NH3。 底物暴露于活化的NH 3和被激发的物质。 衬底也可以暴露于另一物质的前体,以在化学气相沉积中形成化合物层。 此外,已经沉积的层可以通过暴露于活化的NH 3和被激发的物质而被氮化,这导致比等离子体氮化更高的氮掺入水平,使用单独的使用激发的N 2,或者使用单独的NH 3进行热氮化,具有相同的工艺温度 和氮化时间。
-
公开(公告)号:US07092287B2
公开(公告)日:2006-08-15
申请号:US10739901
申请日:2003-12-17
Applicant: Jacobus Johannes Beulens , Yuet Mei Wan
Inventor: Jacobus Johannes Beulens , Yuet Mei Wan
IPC: G11C16/00 , H01L21/336 , H01L21/31
CPC classification number: H01L21/02329 , B82Y10/00 , H01L21/0217 , H01L21/02271 , H01L21/02337 , H01L21/28273 , H01L21/28282 , H01L21/3185 , Y10S977/72
Abstract: A method of forming silicon nitride nanodots that comprises the steps of forming silicon nanodots and then nitriding the silicon nanodots by exposing them to a nitrogen containing gas. Silicon nanodots were formed by low pressure chemical vapor deposition. Nitriding of the silicon nanodots was performed by exposing them to nitrogen radicals formed in a microwave radical generator, using N2 as the source gas.
Abstract translation: 一种形成氮化硅纳米点的方法,其包括以下步骤:形成硅纳米点,然后通过将其暴露于含氮气体来氮化硅纳米点。 通过低压化学气相沉积形成硅纳米点。 通过使用N 2 N 2作为源气体将它们暴露于在微波自由基发生器中形成的氮自由基上进行硅纳米点的氮化。
-
公开(公告)号:US07294582B2
公开(公告)日:2007-11-13
申请号:US11213449
申请日:2005-08-25
Applicant: Ruben Haverkort , Yuet Mei Wan , Marinus J. De Blank , Cornelius A. van der Jeugd , Jacobus Johannes Beulens , Michael A. Todd , Keith D. Weeks , Christian J. Werkhoven , Christophe F. Pomarede
Inventor: Ruben Haverkort , Yuet Mei Wan , Marinus J. De Blank , Cornelius A. van der Jeugd , Jacobus Johannes Beulens , Michael A. Todd , Keith D. Weeks , Christian J. Werkhoven , Christophe F. Pomarede
IPC: H01L21/31 , H01L21/469
CPC classification number: H01L21/0217 , C23C16/24 , C23C16/345 , C23C16/4408 , C23C16/45523 , C23C16/56 , H01L21/02329 , H01L21/0234 , H01L21/02381 , H01L21/02532 , H01L21/0262 , H01L21/3144 , H01L21/3185
Abstract: Sequential processes are conducted in a batch reaction chamber to form ultra high quality silicon-containing compound layers, e.g., silicon nitride layers, at low temperatures. Under reaction rate limited conditions, a silicon layer is deposited on a substrate using trisilane as the silicon precursor. Trisilane flow is interrupted. A silicon nitride layer is then formed by nitriding the silicon layer with nitrogen radicals, such as by pulsing the plasma power (remote or in situ) on after a trisilane step. The nitrogen radical supply is stopped. Optionally non-activated ammonia is also supplied, continuously or intermittently. If desired, the process is repeated for greater thickness, purging the reactor after each trisilane and silicon compounding step to avoid gas phase reactions, with each cycle producing about 5-7 angstroms of silicon nitride.
Abstract translation: 在间歇反应室中进行连续工艺,以在低温下形成超高质量的含硅化合物层,例如氮化硅层。 在反应速率有限的条件下,使用丙硅烷作为硅前体在基板上沉积硅层。 三氯甲烷流动中断。 然后通过用氮自由基氮化硅层来形成氮化硅层,例如通过在丙硅烷步骤之后脉冲等离子体功率(远程或原位)而形成。 停止氮气供应。 任选地,还可以连续或间歇地提供非活化氨。 如果需要,重复该过程以获得更大的厚度,在每个丙硅烷和硅化合步骤之后清洗反应器以避免气相反应,每个循环产生约5-7埃的氮化硅。
-
公开(公告)号:US06209221B1
公开(公告)日:2001-04-03
申请号:US09312243
申请日:1999-05-14
Applicant: Sjaak Jacobus Johannes Beulens
Inventor: Sjaak Jacobus Johannes Beulens
IPC: F26B2106
CPC classification number: C23C16/455 , C23C16/4583
Abstract: Wafer rack consisting of a carrier frame provided with accommodations for at least two wafers. To provide uniform distribution of gas over said wafers a gas distribution device is fitted at least above each wafer, which gas distribution device is connected to the gas supply for the reactor in which the wafer rack is placed. Connection to such a gas supply can be via coupling of the wafer rack to a part of said reactor.
Abstract translation: 晶圆架由承载框架组成,该框架设置有至少两个晶片的住宅。 为了在所述晶片上提供气体的均匀分布,气体分配装置至少装配在每个晶片的上方,该气体分配装置连接到其中放置晶片架的反应器的气体供应。 与这种气体供应的连接可以通过将晶片齿条连接到所述反应器的一部分。
-
公开(公告)号:US06413844B1
公开(公告)日:2002-07-02
申请号:US09758330
申请日:2001-01-10
IPC: H01L2120
CPC classification number: C23C16/4408 , C23C16/0218 , C30B31/06 , H01L21/223
Abstract: A method is described for safe gas phase doping a semiconductor with arsenic. The substrate including a semiconductor structure is exposed to arsine at elevated temperatures within a reaction chamber. Thereafter, prior to opening the reaction chamber, a sealant layer is formed over the semiconductor structure. The sealant layer inhibits outdiffusion of arsenic when the substrate is unloaded from the reaction chamber, enabling safe unloading at relatively high temperatures. In the illustrated embodiments, the sealant layer can be formed by oxidation, nitridation or chemical vapor deposition. Forming the sealant layer can be conducted prior to, during or after cooling the substrate to an unloading temperature. Preferably, a gettering step is conducted after gas phase doping and prior to forming the sealant layer, such as by exposing the substrate to HCl vapor.
Abstract translation: 描述了用砷进行安全气相掺杂半导体的方法。 包括半导体结构的衬底在反应室内的升高的温度下暴露于胂。 此后,在打开反应室之前,在半导体结构上形成密封剂层。 当基材从反应室卸载时,密封剂层抑制砷的扩散,使得在较高温度下能够安全卸载。 在所示实施例中,密封剂层可以通过氧化,氮化或化学气相沉积形成。 密封剂层的形成可以在冷却基板之前,期间或之后进行到卸载温度。 优选地,吸气步骤在气相掺杂之后并且在形成密封剂层之前进行,例如通过将衬底暴露于HCl蒸气。
-
-
-
-