Abstract:
A shower rod assembly comprising a first arm engaged at a proximal end to a first swivel bracket assembly which includes a mounting bracket and a swivel bracket hingedly engaged to the mounting bracket, a second arm engaged to a second swivel bracket assembly which includes a mounting bracket and a swivel bracket hingedly engaged to the mounting bracket, a first attachment end engaged to a distal end of the first arm, first attachment end including a pin sleeve accessible from an outer surface, a second attachment end springingly engaged to a distal end of the second arm, the second attachment end including a coil spring mounted within a spring chamber engaged to the distal end of the second arm, and a pin emanating from an outer surface of the second attachment end where the pin springingly engages the pin sleeve to form a continuous shower rod.
Abstract:
The invention is a wheeled folding tray cart and method. The wheeled folding tray cart comprises a collapsible wheeled framework pivotally supporting a set of split shelves, each split shelf comprises a pair of half shelves. The wheeled folding tray cart moves between an open operating position wherein the set of split shelves are held in spaced-apart, stacked, horizontal orientation within the collapsible wheeled framework and a closed storage position wherein the collapsible wheeled framework is collapsed in manner to move each half shelf pair into an accordion-like, inverted “V”-shaped or accordion like configuration. An extension coiled spring attached to the collapsible wheeled framework assists in the movement of the wheeled folding tray cart between open operating position and the closed storage position. A sheath encloses at least a portion of the spring to provide resistance to the spring's movement to limit potential operator exposure to pinch injuries.
Abstract:
A human powered watercraft or land vehicle is described herein. A watercraft or land vehicle may have two pedals that reciprocated are in a linear or slightly curved trajectory but not a circular motion. As the two pedals are reciprocated, an output shaft is rotated in either a clockwise or counterclockwise direction when the left pedal is pushed forward or when the right pedal is pushed forward. The output shaft may be connected to a propeller of a watercraft or a land vehicle so as to propel the watercraft or land vehicle forward. The output shaft may receive rotational input through two gears mounted to the output shaft with one-way bearings that enable the output shaft to rotate in the same direction regardless of whether the left pedal or the right pedal is being pushed forward.
Abstract:
A human powered watercraft or land vehicle is described herein. A watercraft or land vehicle may have two pedals that reciprocated are in a linear or slightly curved trajectory but not a circular motion. As the two pedals are reciprocated, an output shaft is rotated in either a clockwise or counterclockwise direction when the left pedal is pushed forward or when the right pedal is pushed forward. The output shaft may be connected to a propeller of a watercraft or a land vehicle so as to propel the watercraft or land vehicle forward. The output shaft may receive rotational input through two gears mounted to the output shaft with one-way bearings that enable the output shaft to rotate in the same direction regardless of whether the left pedal or the right pedal is being pushed forward.
Abstract:
A method for etching a bevel edge of a substrate in a processing chamber is provided. The method includes flowing an inert gas into a center region of the processing chamber defined above a center region of the substrate and flowing a mixture of an inert gas and a processing gas over an edge region of the substrate. The method further includes striking a plasma in the edge region, wherein the flow of the inert gas and the flow of the mixture maintain a mass fraction of the processing gas substantially constant. A processing chamber configured to clean a bevel edge of a substrate is also provided.
Abstract:
A valve assembly is provided herein. The valve assembly may include a valve stem coupled to a coil spring and an impact dampening tappet partially enclosing the spring and valve stem and in contact with a cam, the impact dampening tappet including an exterior metal layer having a cam contacting surface and an interior elastomeric layer traversing at least a portion of the interior surface of the exterior metal layer.
Abstract:
A tent having two joints, multiple frames and a fly. The frames are mounted on the joints and are classified into a stationary frame, a supporting frame and at least one pivoting frame. The frames cooperate to define a parking space for receiving a cycle when unfolding. The fly covers the frames and the parking space. The frames are capable of folding and overlapping one another to facilitate carrying and storage of the tent.
Abstract:
A conductive substrate structure includes a substrate unit, a conductive pad unit, and a conductive layer unit. The substrate unit has a top surface, a bottom surface, two opposite lateral surfaces, and a front surface. The conductive pad unit has at least two first conductive pads separated from each other and disposed on the top surface, and at least two second conductive pads separated from each other and disposed on the bottom surface. The conductive layer unit has at least two first conductive layers formed on the front surface and respectively electrically connected to two front sides of the two first conductive pads, and at least two second conductive layers respectively formed on the two opposite lateral surfaces and respectively electrically connected to two opposite lateral sides of the two second conductive pads. The two first conductive layers are respectively electrically connected with the two second conductive layers.
Abstract:
A white light-emitting diode package structure for simplifying package process includes a substrate unit, a light-emitting unit, a phosphor unit and a conductive unit. The light-emitting unit is disposed on the substrate, and the light-emitting unit has a positive conductive layer and a negative conductive layer. The phosphor unit has a phosphor layer formed on the light-emitting unit and at least two openings for respectively exposing one partial surface of the positive electrode layer and one partial surface of the negative electrode layer. The conductive unit has at least two conductive wires respectively passing through the two openings in order to electrically connect the positive electrode layer with the substrate unit and electrically connect the negative electrode layer with the substrate unit.
Abstract:
An LED package structure with a deposited-type phosphor layer includes a substrate unit, a light-emitting unit and a package unit. The substrate unit includes at least one circuit substrate. The light-emitting unit includes a plurality of LED chips disposed on and electrically connected to the at least one circuit substrate. The package unit includes at least one package resin body formed by a mold structure. The at least one package resin body is formed on the at least one circuit substrate to cover the LED chips, and the at least one package resin body includes a continuous phosphor layer formed therein and deposited on outer surfaces of the LED chips by centrifugal force. Hence, the instant disclosure provides the continuous phosphor layer with the deposited phosphor powders for covering the outer surfaces of the LED chips, thus the light-emitting efficiency of the LED package structure can be increased actually.