Abstract:
A circuit device formed from a functional substrate. The circuit device comprises a functional substrate component and printed electronic elements formed on the functional substrate component. The printed electronic elements formed on the functional substrate component interact with the substrate component to perform a function and to modify the functional substrate component. The circuit device typically needs a passive base material that takes no functional part in the device operation except mechanical support.
Abstract:
The present invention is a method and apparatus for producing ready to use RFID devices in a convenient and economical manner. The apparatus of the present invention may be collocated with a manufacturer of consumer goods.
Abstract:
A RFID device which can include a substrate, an antenna having a gap defined therein, a wireless communications device coupled to the antenna and a coating disposed over a portion of the antenna and within a portion of the gap. The coating may be an insulator or an environmentally-responsive material.
Abstract:
The present invention relates to a method of manufacturing an antenna for a radio frequency (RFID) tag. A web of material is provided to at least one cutting station in which a first pattern is generated in the web of material. A further cutting may occur to create additional modifications in order to provide a microchip attachment location and to selectively tune an antenna for a particular end use application. The cutting may be performed by a laser, die cutting, stamping or combinations thereof.
Abstract:
A sensing radio frequency identification device with a strap that is reactively attached to an antenna by a sensing material is provided. In one embodiment, the RFID device includes an antenna, an interposer (or strap), an integrated circuit coupled to the interposer, and a sensing material disposed between the interposer and the antenna. As the relative permittivity of the sensing material changes in response to its exposure to an environmental condition, the reactive coupling between the interposer and the antenna likewise changes thereby causing changes in one or more parameters of communication such as frequency. The sensing material 70 may be a dielectric material selected to have a relative permittivity (i.e., dielectric constant) that varies based on exposure to one or more environmental conditions such as, for example, temperature (i.e., hot or cold), humidity, chemical, biological entity, nuclear, physical, pressure, light, liquid, nuclear and/or other condition.
Abstract:
The present invention relates to a RFID tag having sensing capabilities. The RFID device includes an antenna section and a sensor patch section. The antenna is coupled to a chip. The sensor patch section upon exposure to an environmental condition causes the RFID device to change from a first operating condition to a second operating condition.
Abstract:
A dual band antenna device and method of formation is provided. In one embodiment, the method comprises providing a planar conductive sheet; forming a slot antenna in the conductive sheet; the slot antenna configured to communicate at a first frequency; forming a multi-turn antenna in the conductive sheet; the multi-turn antenna configured to communicate in a second frequency that is different from the first frequency; and connecting at least one integrated circuit to said first antenna and said second antenna; enclosing said first antenna, said second antenna, and said at least one integrated circuit in a wearable enclosure.
Abstract:
A wound dressing includes a substrate, an optical energy emitting device, and a radio frequency receiving device. The substrate is configured to engage biological tissue of a patient. The optical energy emitting device is attached to the substrate, and the radio frequency receiving device is electrically coupled with the optical energy emitting device. The radio frequency receiving device is configured to capture energy from radio frequency transmissions. The radio frequency receiving device is further configured to direct at least a portion of the energy to the optical energy emitting device. Upon receipt of the energy from the radio frequency receiving device, the optical energy emitting device is configured to emit light onto biological tissue of a patient.
Abstract:
An RFID device includes a chip, an antenna operatively coupled to the chip, and a visual indicator operatively coupled to the chip. The visual indicator provides a visual indication of an operative state of the device. The visual indication may be human readable and/or machine readable, and may provide visual indication that is dependent on a change in an operative state of the device. The operative state that triggers the visual indication may include a state in which the chip has temporarily or permanently been rendered inoperative or disabled, that is, in which the chip no longer responds to, or otherwise interacts with, ordinary incoming RF signals such as from a device reader. The visual indicator may be included in a display that functions by any of a variety of suitable mechanisms, such as by use of electrochromic materials, thermochromic materials, liquid crystals, or chemically-reactive materials.
Abstract:
A method of operating a radio frequency (RF) communication device includes internally storing energy received by the RF communication device, and using that energy to enhance communication by the RF communication device upon occurrence of a predetermined event. The energy received by the RF communication device may be energy transmitted by a shelf or other display unit that an object with the RF communication device is located on. The predetermined event may be any of a wide variety of events. The energy storage may be accomplished in a battery, capacitor, or other energy storage device. The use of energy to enhance communication may be used to provide increased power for sending, receiving, or detecting signals. The enhanced power may be provided continuously, and/or may include periods of power enhancement alternating with periods of non-enhancement.