Abstract:
A flash memory device includes a substrate having first and second wells. The first well is defined within the second well. A plurality of trenches defines the substrate into a plurality of sub-columnar active regions. The trenches is formed within the first well and extends into the second well. A plurality of flash memory cells are formed on each of the sub-columnar active regions.
Abstract:
The invention concerns integrated circuits in which a MACRO is embedded in a standard cell array. One level of metal is devoted exclusively to non-local interconnect, and a layer of polysilicon is devoted to local interconnect, thereby saving significant space.
Abstract:
A multi-port packet processor on an integrated circuit provides an efficient means to interface multiple high-speed packet-based communications channels. The multi-port packet processor includes multiple port processors. Each port processor can include a channel interface for coupling to a respective communications channel, a channel processor for processing the data packets received through the channel interface, and an interprocessor communications interface for providing communication between the port processors. The channel interface can be designed to process data packets using a particular set of packet-based protocols. Alternatively, the channel interface can be designed having programmable controls to allow processing of data packets using a selected set, from a number of possible sets, of packet-based protocols.
Abstract:
Instead of using a common substrate (101) for each sector of a flash memory, trenches are used to isolate columnar active substrate regions (304) of the substrate (101), and independent access to each of these columnar regions (304) is provided. First, the independent access to each of these columnar regions (304) provides a capability for achieving more precise control over the voltage on the floating gates (106). For example, flash memory in accordance with the present invention is better suited for multi-level storage (storing of more than 1 bit of information per cell). Second, the independent access to each of these columnar regions (304) also provides a capability for areas of flash memory smaller than an entire sector to be erased at one time. Finally, since both programming and erasing is achieved by way of cold electron tunneling from the columnar active substrate region (304), no high voltages need to be applied to either the drain (102) or source (104). This is advantageous in that the minimum distance required by cell punchthrough is reduced. Hence, higher densities of flash memory may be achieved.