摘要:
An optical assembly includes a first transparent substrate having first and second surfaces, a second transparent substrate having substantially parallel third and fourth surfaces, a reflective portion on the second transparent substrate, a plurality of filters between the first substrate and the reflective portion, the plurality of filters filtering light beams incident thereon, the plurality of filters and the reflective portion forming a bounce cavity within the second transparent substrate, a collimating lens for collimating light beams to be input to the bounce cavity, a tilt mechanism for introducing tilt to light beams input to the bounce cavity; an input port receiving light beams and an output port transmitting light beams. The tilt mechanism may be between the first and second substrate.
摘要:
A waveguide to waveguide monitor includes an optics block between the two waveguides. The optics block couples light between the two waveguides and includes at least two parallel surfaces. The monitor also has an optical tap which creates a monitor beam. The optics block may be flush with the endfaces of the waveguides, even if the endfaces are angled. At least two optical elements needed to couple the light between the two optical waveguides and direct the monitor beam on a detector are on the at least two parallel surfaces of the optics block and any surfaces secured thereto.
摘要:
An interface system includes separate optical and mechanical interfaces between opto-electronic devices and fibers. This allows each of these components to be optimized for there particular function. This also allows two surfaces to be provided for the optical interface, allowing the opto-electronic elements to be spaced further apart than the fibers. The interface system can be integrated together, used in conjunction with a conventional fiber housing, and can be surface mounted with an electrical interface.
摘要:
A power monitor for a light emitter uses an absorptive material placed in the path of the application beam. The absorptive has a measurable characteristics thereof altered by an intensity of the light beam, the absorptive material being thin enough to allow a portion of the light beam sufficient for a desired application to be passed to the desired application. Preferably, an anti-reflective coating is placed between the absorptive material and the light emitting device. The absorptive material may be formed directly on the light emitting device or may be formed on or integrated with a spacer.
摘要:
An interface system includes separate optical and mechanical interfaces between opto-electronic devices and fibers. This allows each of these components to be optimized for there particular function. This also allows two surfaces to be provided for the optical interface, allowing the opto-electronic elements to be spaced further apart than the fibers. The interface system can be integrated together, used in conjunction with a conventional fiber housing, and can be surface mounted with an electrical interface.
摘要:
An optical subassembly includes an opto-electronic device, an optics block and a spacer, separate from the optics block and providing spacing between the opto-electronic device and the optics block. The opto-electronic device, the optics block and the spacer are aligned and bonded together. This subassembly is particularly useful when coupling light between the opto-electronic device and a fiber. The optical subassembly may also include an opto-electronic device, an optics block and a sealing structure surrounding the opto-electronic device. The opto-electronic device, the optics block and the sealing structure are aligned and bonded together.
摘要:
The present invention relates to a novel, accurate, passive alignment of optical and optoelectronic elements using silicon waferboard technology. The invention particularly relates to the use of etched v-grooves on monocrystalline materials in conjunction with alignment spheres to effect the passive alignment.
摘要:
A passively aligned bi-directional optoelectronic transceiver module assembly utilizes a computer generated hologram as a diffractor to split/combine light beams of two different wavelengths. The entire assembly is constructed of monocrystalline silicon which is photolithographically batch processed to provide a low cost, compact structure with precision tolerances which is inherently passively aligned upon assembly.
摘要:
An optical device includes a substrate. a non-planar transparent structure on a first surface of the substrate, the non-planar transparent structure being made of a first material, and a molded refractive surface on the first surface of the substrate adjacent the non-planar transparent structure, the molded refractive surface being made of a second material, different from the first material.
摘要:
A passive optical element is transferred into a substrate already having features with a vertical dimension thereon. The features may be another passive optical element, an active optical element, a dichroic layer, a dielectric layer, alignment features, metal portions. A protective layer is provided over the feature during the transfer of the optical element. One or more of these processes may be performed on a wafer level.