Abstract:
One embodiment of the present invention relates to a sensor for measuring biosignals. The sensor according to said embodiment comprises: a sensor layer formed by stacking a plurality of sensor layers that are attachable to the skin to measure different types of bio signals; a power for supplying power to the sensor layer; and a sensing electrode for sensing biosignals from the human body. The plurality of sensor layers takes the signals sensed by the sensing electrode as an input, and determines whether or not to measure the inputted signals. Then, the relevant sensor layer that can measure the sensed signal is activated.
Abstract:
In circumstance of a wearable computing system, in order to effectively transfer data between electronic devices using electric property of human body, minimization, low power, and high-speed are required. Human body data communication apparatus and module using broadband signaling technology is provided to perform high-speed peer-to-peer data communication with a signal electrode and low power. The apparatus and module have a direct coupling interface with a single electrode without an antenna and a sensor, and a transmitter transmitting digital signal without modulation, and a receiver recovering a clock and data by detecting a broadband pulse signal.
Abstract:
Disclosed is a frame buffer structure having a sub-word line way of 9 banks in which a dispersed 9-tile mapping shaped data storing method and a partial activation for the method are possible, the frame buffer structure requiring a low power consumption, and a frame buffer being integrated with a logic to properly correspond to an application region to process an MPEG image signal. A method for storing a compressed MPEG image in the frame buffer, comprises: a first step of dividing an image frame into 8×8 pixels regions; a second step of re-designating the respective divided pixel regions into 9 adjacent blocks regions having a form of 3×3; a third step of mapping the 8×8 pixel regions consisting of the 9 adjacent blocks regions having the form of 3×3 into one column; and a fourth step of dispersion-storing the mapped 9 blocks regions of 8×8 pixel regions in different banks.
Abstract:
A self-bootstrapping device for sufficiently bootstrapping a bias applied to the gate of a MOS transistor included in the decoder of a semiconductor memory device requiring a high integration degree so that the MOS transistor can transmit the potential from its drain to its source. The self-bootstrapping device includes a first NMOS transistor for a signal transmission, and a second NMOS transistor connected between the gate of the first NMOS transistor and an address decoder circuit, the second NMOS transistor being applied at its gate with a source voltage, wherein the second NMOS transistor comprises a first diffusion region formed at a required portion of a semiconductor substrate, a second diffusion region formed around the first diffusion region while being spaced apart from the first diffusion region by a desired distance, and a gate electrode formed on the semiconductor substrate between the first and second diffusion regions.
Abstract:
A program counter of a microcontroller and a method for controlling the same are disclosed. The program counter receives an external input program count indicating an address of a program to be executed by the microcontroller when the microcontroller wakes up out of a power-save/sleep mode, whereby the microcontroller can execute a desired program directly upon waking up without additionally performing an internal initialization process. Therefore, a system can wake up immediately while minimizing leakage power to reduce overall power consumption and time required for waking up.
Abstract:
Wireless audio data transmitting and receiving apparatus using human body is disclosed. An audio signal outputted from a portable audio player is converted by the digital audio interface technology without a wire or an antenna, is transferred through human body using only a single signal electrode at high speed, and the audio signal transferred through the human body is received to listen through an earphone. Thus, the inconvenient wire is removed to improve the convenience to use and the antenna which has a difficulty due to the size and the installation is not required. Moreover, since additional encoding and decoding for the reduction of the transfer rate are not required so that the high speed transfer is enabled and the power consumption can be reduced, components and/or a battery can be reduced in size and can be minimized.
Abstract:
An apparatus for stabilizing a boosted voltage includes a voltage detector, a buffer driver control unit and a buffer driver. The voltage detector detects a change in a level of a boosted voltage and outputs first through N-th detection signals corresponding to the detected change, the boosted voltage being generated to have a higher voltage level than a power supply voltage level in response to a clock signal. The buffer driver control unit generates first through 2N-th current control signals based on the first through N-th detection signals. The buffer driver includes first through N-th inverter drivers that selectively operate based on the first through 2N-th current control signals, thereby modulating a charging current for generating the boosted voltage. Hence, the boosted voltage having a constant level and a reduced ripple may be generated.
Abstract:
Device for delaying a clock signal using a ring delay is disclosed. The device can include a delay for delaying an external clock signal eCLK as much as time delays d1+d2 of a time delay d1 occurring on reception and a time delay d2 occurring on driving an output buffer, a pulse generator for receiving the clock signal from the delay and generating rectangular pulses synchronous to rising edges, and a ring delay having a plurality of unit delays connected in a ring form for delaying and circulating the pulse signal generated in the pulse generator as well as latching a signal from each unit delay synchronous to the clock signal rCLK received in the chip. The first clock signal delay is for delaying the clock signal rCLK in a course corresponding to a number of circulation, and a second clock signal delay is for making a fine delay of the clock signal from the first clock signal delay in response to a latch signal from the ring delay. A reset signal generator is for resetting the ring delay and the first, and second clock signal delays in response to the clock signal rCLK.
Abstract:
Disclosed are a wearable monitoring apparatus and a driving method thereof. The wearable monitoring apparatus comprises: a sensor unit for measuring a biological signal from a human body, wherein the sensor unit is adhered to a skin; and a control unit for searching a location of the sensor unit, supplying power to the sensor unit, and receiving and processing the biological signal from the sensor unit, wherein the control unit is formed to be wearable.
Abstract:
There is provided an inductive coupling transmitting and receiving apparatus. An inductive coupling transmitting and receiving apparatus according to an embodiment of the present invention comprises an inductive coupling transceiver transmitting and/or receiving data; an inductor connected to the inductive coupling transceiver; and a resonance compensator connected to the inductive coupling transceiver and the inductor to compensate for a change in inductance of the inductor.