摘要:
Provided is a method for manufacturing a two-dimensional pattern by simultaneously forming a plurality of quantum dots on a surface of a solid material and making the quantum dots a periodic structure by a laser irradiation, and a device structure and a device fabricated by the method. The method for fabricating a quantum dot-formed surface including the laser irradiation which irradiate at least one batch of laser onto a surface of a solid material to simultaneously form a plurality of quantum dots on the surface, arranging the plurality of quantum dots into periodic arrays.
摘要:
A micro-fabrication method characterized by comprising the steps of applying a pulse laser beam to a plastic material to be processed exhibiting a glass phase transition by heating and having a heat-shrinkage to form laser-processed patterns on the surface of or in the above plastic material to be processed, and then heat-treating the plastic material to be processed at a temperature not lower than a glass transition temperature Tg to fine the formed patterns by heat-shrinkage.
摘要:
Irradiating a plurality of laser beams onto different microparticles or different groups of microparticles, and trapping and/or manipulating these microparticles or groups of microparticles. This method permits manipulation of microparticles with a plurality of trapping laser beams not mutually interfering just as with two human hands. By coaxially introducing an excited laser beam, it is possible to induce chemical reactions for processing or assembling.
摘要:
The present invention has an object to provide a photoelectric conversion device which can be manufactured through a simple manufacturing process, achieve photoelectric conversion over a wide range of wavelength regions, and attain high photoelectric conversion efficiency even in the infrared wavelength region, a photodetection device, and a photodetection method. This photoelectric conversion device 1 includes a substrate 2 containing single crystalline titanium dioxide, adhesion layers 2c formed on a surface 2a of the substrate 2, metal microstructure bodies 3, each of which has a volume of 1,000 nm3 or more and 3,000,000 nm3 or less, arranged at predetermined intervals in a predetermined direction on surfaces of the adhesion layers 2c, a container 4 for containing an electrolyte solution L in an arrangement region of the metal microstructure bodies 3 on the surface 2a of the substrate 2, a conductive layer 7 formed on a rear surface 2b of the substrate 2, and a counter electrode 5 in contact with the electrolyte solution L in the container 4; and the metal microstructure bodies 3 adhere onto the substrate 2 through the adhesion layers 2c, a Schottky barrier is formed at an interface of the substrate 2 with the metal microstructure bodies 3, and photoelectric conversion is carried out for light in an infrared region by utilizing a plasmon resonance phenomenon.
摘要:
In a metallic structure including a metallic nano-chain with plasmon resonance absorption, a metallic nanoparticle forming the metallic nano-chain is formed in a circular, triangle, or rhomboid shape. The wavelength selectivity can be increased also by forming a closed region by mutually linking all of metallic nanoparticles that are mutually linked with bottlenecks. In a photodetector, a photodetection unit including a current detection probe, a nano-chain unit, and a current detection probe is arranged on a substrate. The nano-chain unit is a metallic structure with plasmon resonance absorption, where metallic nanoparticles are mutually linked with bottlenecks. Each current detection probe has a corner whose tip is formed with a predetermined angle, and this corner is arranged to face the tip of the nano-chain unit, i.e., a corner of the metallic nanoparticle. Photodetection with high wavelength selectivity is performed based on a change in the initial voltage of the current-voltage characteristic.
摘要:
A high-luminance quantum correlation photon beam generator a photon beam of a quantum correlated pair characterized by includes: a laser light source (1) operable to emit a laser pumped light; a parametric crystal (2) operable to generate a pair of two photons of a signal photon and an idler photon on receiving the pumped light from the laser light source (1) to emit two photon beams along two non-concentric cones; a beam splitting means (5) operable to split a signal photon beam (6) from an idler photon beam (7); a mode inverter (10) operable to rotate one of the annular signal photon beam (6) and the idler photon beam (7) 180° around its geometric center; a phase adjusting means (8) operable to adjust phases of the signal photon beam (6) and the idler photon beam (7) based on an optical time delay; and a beam coupling means (14) operable to overlay the signal photon beam (6) with the idler photon beam (7) in a common-line polarized annular shape by the mode inverter (10) to bring them into a quantum correlated state.
摘要:
A method of 3D holographic recording by using a very simple optical system comprises: dividing a femto-second laser pulse into a plurality of light beams by a diffraction beam splitter (3), focusing four light beams selected from the divided plurality of light beam, and further focusing these four light beams into a sample (7) comprised of a photosensitive material capable of multi-photon exposure so that the photosensitive material is exposed to the interference among the four light beams and multi-photon absorption in the sample (7) is induced, thus recording a 3D phase hologram on the irradiated portion of the sample (7).
摘要:
A method of 3D holographic recording by using a very simple optical system comprises: dividing a femto-second laser pulse into a plurality of light beams by a diffraction beam splitter (3), focusing four light beams selected from the divided plurality of light beam, controlling each optical phase of the selected four light beams by a phase retarder (8). and further focusing these four light beams into a sample (7′) comprised of a photosensitive material capable of multi-photon exposure so that the photosensitive material is exposed to the interference among the four light beams and multi-photon absorption in the sample (7′) is induced, thus recording a 3D phase hologram on the irradiated portion of the sample (7′).
摘要:
The invention relates to a three-dimensional optical memory element. This element is made of glass and includes: a glass matrix which has a first refractive index; and a plurality of spots which are three-dimensionally distributed in the glass matrix and each of which has a second refractive index different from the first refractive index. The element is prepared by condensing a pulsed laser beam to focal points in the element so as to prepare, at the focal points, the spots corresponding to the focal points. Each focal point has a diameter which is approximately equal to a wavelength of the pulsed laser beam. The element has a sufficient weatherability and a sufficient resistance to heat and light. It is possible to write information at each spot having a diameter equal to or shorter than the wavelength of the laser beam, with high density and good contrast.
摘要:
The present invention provides microprocessing and the device therefor which is characterized by radiating proessing pulse laser together with trapping laser to perform the modification and processing of particles and micropcapsules.In the case of using such method for implosion, the reaction group is caused to be released by imploding the micro capsule with the reactive goup enclosed to implosion, permitting specified reaction and processing.