Abstract:
A process for the selective removal of hydrogen sulfide from a gas containing hydrogen sulfide and carbon dioxide wherein said gas is contacted at superatmospheric pressure with an alkali metal carbonate solution, the resultant solution which contains hydrosulfide and bicarbonate is subjected to pressure reduction, the total alkali metal bicarbonate content of the resultant solution is adjusted so that it is at least 55% of the total alkali content of the solution and the said solution is then stripped and recycled to the hydrogen sulfide absorption step.
Abstract:
A reactor for the continuous gasification of coal under superatmospheric pressures and elevated temperatures with gaseous gasifying agents containing free oxygen and with oxygen-free gasifying agents such as steam and/or carbon dioxide is disclosed. The reactor includes a substantially conical rotary grate which is rotatably mounted in the lower portion of the reactor housing. The rotary grate feeds the gasifying agent and/or discharges the gasification residues. Notwithstanding the inside diameter of the reactor housing, the clearance a between the rotary grate and the housing is 100-200 millimeters, the height b of the annular rim of the rotary grate is 100-350 millimeters, and the vertical distance c from the rotary grate to the housing bottom is 100-350 millimeters.
Abstract:
The gases discharged from the sulfur condenser of a Claus process reactor are contacted with an active adsorbent to remove further sulfur and the resulting exhaust gas is afterburned. A desorption gas is passed in closed cycle through the laden adsorbent and is heated, in this cycle, in heat exchange with the hot gases emerging from the afterburner. The sulfur is condensed from the desorption gas with the same cooling system used for the Claus process condensation and water vapor produced by the cooling system is condensed and by gravity is returned to the condensation stage.
Abstract:
Methanol is produced by a process wherein1. sulfur-containing high-boiling hydrocarbons are subjected to a partial oxidizing treatment with oxygen and water vapor at a pressure which is at least 5 kilograms and preferably 10-15 kilograms per square centimeter above the pressure of the methanol synthesis to produce a raw gas;2. the raw gas is desulfurized and is subsequently treated with water vapor to convert part of its carbon monoxide content into hydrogen and carbon dioxide;3. thereafter the converted gas from step (2) is scrubbed to remove at least part of the carbon dioxide;4. methanol is produced by a reaction of the resulting synthesis gas from step (3) in contact with a copper-containing catalyst, which is indirectly cooled with water boiling under superatmospheric pressure resulting in the production of high-pressure steam; and5. the high-pressure steam produced by the exothermic heat of formation of the methanol in step (4) is expanded by generating power to produce compression energy for the gases to be compressed in the process.
Abstract:
The present invention relates to an electrode catheter for defibrillation, mapping or ablation of cardiac tissue. Said catheter comprises a terminal (40) on the proximal end of the electrode catheter and one or more sensing and/or treatment electrodes (14, 16) that are situated on or in the vicinity of the distal end of the electrode catheter, in addition to at least one electric conductor (44, 62), which is used to electrically connect a respective sensing or treatment electrode to the terminal. The electric conductor (44, 62) is composed of carbon and the electrode catheter is configured to be suitable for us as part of magnetic resonance tomography and for connection to electrophysiotherapy equipment. Said catheter comprises at least one defibrillation electrode, or at least one sensing electrode (14, 16) for the recording and evaluation of cardiac tissue potentials, or at least one treatment electrode (14) for delivering high-frequency currents for ablation purposes.
Abstract:
A reactor is provided for producing methanol by the reaction of synthesis gases containing carbon oxides and hydrogen in contact with a copper containing catalyst positioned in the reactor in catalyst tubes surrounded by boiling water under pressure. The catalyst tubes are made from a metallic material which is catalytically inactive with respect to the methanol synthesis gas and have approximately the same coefficient of thermal expansion as the shell of the reactor. The catalyst tubes are made of a steel composed of mixed austeniticferritic structure and containing 10-30% by weight chromium.
Abstract:
The present invention relates to an electrode catheter for defibrillation, mapping or ablation of cardiac tissue. Said catheter comprises a terminal (40) on the proximal end of the electrode catheter and one or more sensing and/or treatment electrodes (14, 16) that are situated on or in the vicinity of the distal end of the electrode catheter, in addition to at least one electric conductor (44, 62), which is used to electrically connect a respective sensing or treatment electrode to the terminal. The electric conductor (44, 62) is composed of carbon and the electrode catheter is configured to be suitable for us as part of magnetic resonance tomography and for connection to electrophysiotherapy equipment. Said catheter comprises at least one defibrillation electrode, or at least one sensing electrode (14, 16) for the recording and evaluation of cardiac tissue potentials, or at least one treatment electrode (14) for delivering high-frequency currents for ablation purposes.