摘要:
Amplifiers with improved linearity and noise performance are described. In an exemplary design, an apparatus includes first through sixth transistors. The first transistor receives an input signal and provides an amplified signal. The second transistor receives the amplified signal and provides signal drive for an output signal. The third transistor receives the input signal and provides an intermediate signal. The fourth transistor provides bias for the third transistor in a high linearity mode. The fifth transistor receives the intermediate signal and provides signal drive for the output signal in a low linearity mode. The third and fourth transistors form a deboost path that is enabled in the high linearity mode to improve linearity. The third and fifth transistors form a cascode path that is enabled in the low linearity mode to improve gain and noise performance. The sixth transistor generates distortion component used to cancel distortion component from the first transistor.
摘要:
A straight-split pouch, a method for manufacturing the pouch, and a device for manufacturing the pouch. The pouch is based on a front synthetic resin sheet and a rear synthetic resin sheet, has a notch marking the tear starting point at the openable portion, and has a series of multiple grooves for splitting disposed at a predetermined distance from one another along a straight line at the openable portion starting from the notch. The method includes producing a base film; producing the grooves for splitting; applying an adhesive to the surface protection layer and drying the layer; adhering the base film to the surface protection layer; sealing a large-area sheet; and cutting the sealed large-area sheet and forming the notch. The device includes first and second winding portions; an adhesive application portion; a chamber; a shaping apparatus; a laminating treatment portion; and a heat seal and cutting portion.
摘要:
A receiver with a balanced I/Q transformer is described. In an exemplary design, the receiver includes an LNA that amplifies a received RF signal and provides a single-ended RF signal to the balanced I/Q transformer. The balanced I/Q transformer includes at least one primary coil and first and second secondary coils. The first secondary coil is magnetically coupled to the at least one primary coil and provides a first differential RF signal to a first mixer. The second secondary coil is magnetically coupled to the at least one primary coil and provides a second differential RF signal to a second mixer. The first and second mixers downconvert the first and second differential RF signals with I and Q LO signals, respectively, and provide differential I and Q downconverted signals. The primary and secondary coils may be fabricated on two conductive layers of an integrated circuit.
摘要:
A receiver with a balanced I/Q transformer is described. In an exemplary design, the receiver includes an LNA that amplifies a received RF signal and provides a single-ended RF signal to the balanced I/Q transformer. The balanced I/Q transformer includes at least one primary coil and first and second secondary coils. The first secondary coil is magnetically coupled to the at least one primary coil and provides a first differential RF signal to a first mixer. The second secondary coil is magnetically coupled to the at least one primary coil and provides a second differential RF signal to a second mixer. The first and second mixers downconvert the first and second differential RF signals with I and Q LO signals, respectively, and provide differential I and Q downconverted signals. The primary and secondary coils may be fabricated on two conductive layers of an integrated circuit.
摘要:
Amplifiers with improved linearity and noise performance are described. In an exemplary design, an apparatus includes first through sixth transistors. The first transistor receives an input signal and provides an amplified signal. The second transistor receives the amplified signal and provides signal drive for an output signal. The third transistor receives the input signal and provides an intermediate signal. The fourth transistor provides bias for the third transistor in a high linearity mode. The fifth transistor receives the intermediate signal and provides signal drive for the output signal in a low linearity mode. The third and fourth transistors form a deboost path that is enabled in the high linearity mode to improve linearity. The third and fifth transistors form a cascode path that is enabled in the low linearity mode to improve gain and noise performance. The sixth transistor generates distortion component used to cancel distortion component from the first transistor.