Abstract:
The invention discloses a curtain controller comprising a cover plate, a housing, a clutch head, a clutch device, a pushing device and a pull rope; wherein the pull rope drives the pushing device for forward movement to push the clutch device to be engaged with the clutch head; and after the pull rope is released, the pushing device moves backward to drive the clutch device to be disengaged with the clutch head and the pull rope is wound onto the pushing device. The curtain controller of the invention has a simple structure and few parts and components to reduce the production cost, and provides simple operation to facilitate maintenance and replacement when a fault occurs.
Abstract:
It is provided a method, comprising assigning a first direct resource of a radio interface to a first vehicle-to-vehicle service based on a resource information received from a base station in a cellular mode via a cellular resource of the radio interface, wherein, in the resource information, the first direct resource and the first vehicle-to-vehicle service are indicated as being correlated, and the first vehicle-to-vehicle service is to be used or to be provided by at least a first one of one or more vehicle devices, and wherein, in the cellular mode, a communication of an apparatus performing the method with each of the one or more vehicle devices different from the apparatus is performed via the base station; performing the first vehicle-to-vehicle service via the first direct resource in a vehicle-to-vehicle mode, wherein, in the vehicle-to-vehicle mode, the communication of the apparatus with each of the one or more vehicle devices is performed directly with the respective vehicle device and does not involve the base station.
Abstract:
From a plurality of messages provided by at least a first license-exempt access node which give usage information for the at least one channel in license-exempt radio spectrum, there is derived channel-specific statistical traffic information. This information for the channel is then provided to a second access node that controls licensed radio spectrum. Or in another embodiment the second access node can get this information by sensing and measuring the channel itself. The second access node retrieves this information from its local memory and sends on the licensed radio spectrum a downlink message having contents, determined from the channel-specific statistical traffic information, for aiding a user equipment UE to access the channel with a probability defined by the contents. The UE receives this message, extracts the contents, and attempts to access that channel in the license-exempt radio spectrum utilizing the defined probability.
Abstract:
The specification and drawings present a new method, apparatus and software related product (e.g., computer readable memory) for implementing a device-to-device communication of cellular, e.g., LTE, wireless devices on a shared band (e.g., ISM 2.4 GHz band), including the signaling and procedure design for contending or coordinating with the already existing radio systems (e.g., WLAN systems).
Abstract:
A method for characterizing a carbon overcoat is provided. The method includes performing electron energy loss spectroscopy (EELS) spectrum imaging for an area of a preselected carbon-based material and an area of the carbon overcoat to generate a reference EELS dataset and a carbon overcoat EELS dataset, respectively, and determining a carbon bonding content of the carbon overcoat based on the reference EELS dataset and the carbon overcoat EELS dataset.
Abstract:
The present invention proposes a method and corresponding apparatus for coordinating the executions of intra-radio handover, wherein the method comprising determining an intra-radio handover is to be executed on a communication device; and coordinating the execution of the intra-radio handover to determine whether to postpone the execution of the intra-radio handover, so that there is at least one active radio on the communication device.
Abstract:
Methods for characterizing relative film density using spectroscopic analysis at the device level are provided. One such method includes obtaining a composition of materials at preselected areas of a workpiece using energy dispersive X-ray spectroscopy, obtaining an electron energy loss spectrum-imaging data at each of the preselected areas using electron energy loss spectroscopy, removing, for each of the preselected areas, a preselected noise component of the electron energy spectrum-imaging data to form a plasmon energy spectrum-imaging data, generating, for each of the preselected areas, a plasmon energy map based on the respective plasmon energy spectrum-imaging data, determining, for each of the preselected areas, an average plasmon energy value from the respective plasmon energy map, and calculating a relative mass density of the preselected areas based on the average plasmon energy value, a number of valence electrons per molecule, and a molecular weight for each of the preselected areas.
Abstract:
A method is provided for facilitating multicast service. The method may include receiving data multicast to members of a multicast group. The method may further include determining, based at least in part on an indication received during multicast of the data, that a late joining device has joined the multicast group subsequent to initiation of the multicast. The method may additionally include marking, based at least in part on the received indication, a point at which the late joining device began to participate in the multicast. A corresponding apparatus and computer program product are also provided.
Abstract:
There are provided measures for spectrum sharing for cellular-controlled offloading using an unlicensed band. Such measures exemplarily comprise initiating an offloading of traffic from a cellular link on a cellular band to an unlicensed link on an unlicensed band, wherein the unlicensed link is synchronized with the cellular link, and sensing a channel on the unlicensed band in a symbol-synchronized sensing duration of at least one symbol length at the beginning of a predetermined subframe of the unlicensed band.
Abstract:
A method includes receiving at a relay node a load status indicator from a subordinate relay node, determining a load status of the relay node and forwarding the received load status indicator to a super-ordinate node if the determined load status does not indicate an overload condition, otherwise if the determined load status does indicate an overload condition sending a load status indicator of the relay node to the superordinate node. Another method includes, in a multihop relay network having a plurality of relay nodes, receiving over a communication link at a network access node a load status indicator from a relay node, the load status indicator identifying a nearest relay node, if any, at which a current load exceeds a threshold; and using the received load status indicator at least when making a network admission decision for a user equipment.