Abstract:
Provided are a magnetoresistance effect element with a stable magnetization direction perpendicular to film plane and a controlled magnetoresistance ratio, in which writing can be performed by magnetic domain wall motion, and a magnetic memory including the magnetoresistance effect element. The magnetoresistance ratio is controlled by forming a ferromagnetic layer of the magnetoresistance effect element from a ferromagnetic material including at least one type of 3d transition metal or a Heusler alloy. The magnetization direction is changed from a direction in the film plane to a direction perpendicular to the film plane by controlling the film thickness of the ferromagnetic layer on an atomic layer level.
Abstract:
Provided are a magneto resistive effect element with a stable magnetization direction perpendicular to a film plane and with a controlled magnetoresistance ratio, and a magnetic memory using the magneto resistive effect element. Ferromagnetic layers 106 and 107 of the magneto resistive effect element are formed from a ferromagnetic material containing at least one type of 3d transition metal such that the magnetoresistance ratio is controlled, and the film thickness of the ferromagnetic layers is controlled on an atomic layer level such that the magnetization direction is changed from a direction in the film plane to a direction perpendicular to the film plane.
Abstract:
There is provided a magnetoresistive element whose magnetization direction is stable in a direction perpendicular to the film surface and whose magnetoresistance ratio is controlled, as well as magnetic memory using such a magnetoresistive element. By having the material of a ferromagnetic layer forming the magnetoresistive element comprise a ferromagnetic material containing at least one type of 3d transition metal, or a Heusler alloy, to control the magnetoresistance ratio, and by controlling the thickness of the ferromagnetic layer on an atomic layer level, the magnetization direction is changed from being in-plane with the film surface to being perpendicular to the film surface.
Abstract:
The present invention provides a current injection-type magnetic domain wall-motion device which requires no external magnetic field for reversing the magnetization direction of a ferromagnetic body and which has low power consumption. The current injection-type magnetic domain wall-motion device includes a microjunction structure including two magnetic bodies (a first magnetic body 1 and a second magnetic body 2) having magnetization directions antiparallel to each other and a third magnetic body 3 sandwiched therebetween. The magnetization direction of the device is controlled in such a manner that a pulse current (a current density of 104-107 A/cm2) is applied across junction interfaces present in the microjunction structure such that a magnetic domain wall is moved by the interaction between the magnetic domain wall and the current in the same direction as that of the current or in the direction opposite to that of the current.
Abstract translation:本发明提供一种电流注入型磁畴壁运动装置,其不需要用于反转铁磁体的磁化方向的外部磁场并且具有低功耗。 电流注入型磁畴壁运动装置包括具有彼此反平行的磁化方向的两个磁体(第一磁体1和第二磁体2)和夹在其间的第三磁体3的微结构结构。 以这样的方式控制器件的磁化方向:使脉冲电流(电流密度为10×10 -7 / A 2 / cm 2 / >)施加在微结结构中存在的结界面上,使得磁畴壁通过磁畴壁与电流在与电流或电流相反的方向相同的方向上的相互作用而移动 。
Abstract:
A nonvolatile solid state magnetic memory with a ultra-low power consumption and a recording method thereof, the memory including a magnetic material having a magnetic anisotropy that can be changed by increasing or decreasing a carrier concentration, wherein a direction of an easy axis of magnetization, in which the magnetization is oriented easily, is controlled by increasing or decreasing the carrier concentration. The nonvolatile solid state magnetic memory including a recording layer of a magnetic material, and a recording method thereof, in which a carrier (electron or hole) concentration in the recording layer is increased and/or decreased, whereby the magnetization is rotated or reversed and the recording operation is performed.
Abstract:
An underlayer made of a III-V semiconductor compound is formed on a given substrate, and a CrSb compound is epitaxially grown on the underlayer by means of MBE method to fabricate a zinc blend type CrSb compound.
Abstract:
Provided are a magneto resistive effect element with a stable magnetization direction perpendicular to a film plane and with a controlled magnetoresistance ratio, and a magnetic memory using the magneto resistive effect element. Ferromagnetic layers 106 and 107 of the magneto resistive effect element are formed from a ferromagnetic material containing at least one type of 3d transition metal such that the magnetoresistance ratio is controlled, and the film thickness of the ferromagnetic layers is controlled on an atomic layer level such that the magnetization direction is changed from a direction in the film plane to a direction perpendicular to the film plane.
Abstract:
There is provided a magnetoresistive element whose magnetization direction is stable in a direction perpendicular to the film surface and whose magnetoresistance ratio is controlled, as well as magnetic memory using such a magnetoresistive element. By having the material of a ferromagnetic layer forming the magnetoresistive element comprise a ferromagnetic material containing at least one type of 3d transition metal, or a Heusler alloy, to control the magnetoresistance ratio, and by controlling the thickness of the ferromagnetic layer on an atomic layer level, the magnetization direction is changed from being in-plane with the film surface to being perpendicular to the film surface.
Abstract:
The present invention provides a current injection-type magnetic domain wall-motion device which requires no external magnetic field for reversing the magnetization direction of a ferromagnetic body and which has low power consumption. The current injection-type magnetic domain wall-motion device includes a microjunction structure including two magnetic bodies (a first magnetic body 1 and a second magnetic body 2) having magnetization directions antiparallel to each other and a third magnetic body 3 sandwiched therebetween. The magnetization direction of the device is controlled in such a manner that a pulse current (a current density of 104-107 A/cm2) is applied across junction interfaces present in the microjunction structure such that a magnetic domain wall is moved by the interaction between the magnetic domain wall and the current in the same direction as that of the current or in the direction opposite to that of the current.
Abstract:
Provided are a magnetoresistance effect element with a stable magnetization direction perpendicular to film plane and a controlled magnetoresistance ratio, in which writing can be performed by magnetic domain wall motion, and a magnetic memory including the magnetoresistance effect element. The magnetoresistance ratio is controlled by forming a ferromagnetic layer of the magnetoresistance effect element from a ferromagnetic material including at least one type of 3d transition metal or a Heusler alloy. The magnetization direction is changed from a direction in the film plane to a direction perpendicular to the film plane by controlling the film thickness of the ferromagnetic layer on an atomic layer level.