Abstract:
A method of processing image data from a multi-chip array with a plurality of photosensitive chips aligned substantially in a transverse direction, including: generating, using a processor for at least one specially programmed computer, a Δy or Δx optical error value equal to a difference in process and transverse directions, respectively, between actual and apparent locations for a first photosensor, the apparent location due to optical error; and storing, in a memory element for the specially programmed computer, respective outputs from the photosensors in the array for first and second scan lines. The actual location is included in the first scan line. The processor retrieves, for use as at least part of useful image data for the first photosensor, the stored output of: the first photosensor for the second scan line for a Δy optical error, or a second photosensor for the first line for a Δx optical error . . . .
Abstract:
The present invention is directed to a system and method for compensating for offset and gain drift in a fast scan direction during an image forming process. To achieve compensation, the present invention samples a plurality of permanently darkened pixels upon powering up image sensors and circuitry therefor and during a sub-scanning process of an image and feeds this information into an offset value generating circuit. The offset generating circuit continually adjusts a pixel offset voltage according to a difference between sequential samples of the permanently darkened pixel, thereby compensating for fast scan offset drift. The present invention also samples a plurality of active pixels during a scanning of a calibration strip. From this scan, a gain corrective value is calculated. The present invention then samples active pixels during a scanning of a platen background. In response to this sampling, the gain corrective value is continually adjusted according to a difference between sequential samples of the platen background, thereby compensating for fast scan gain drift. The present invention can also compensate and balance transfer functions for a plurality of communication channels in a multi-channel system by using the same target values and same reference signals for each channel.
Abstract:
A method of processing image data from a multi-chip array with a plurality of photosensitive chips aligned substantially in a transverse direction, including: generating, using a processor for at least one specially programmed computer, a Δy or Δx optical error value equal to a difference in process and transverse directions, respectively, between actual and apparent locations for a first photosensor, the apparent location due to optical error; and storing, in a memory element for the specially programmed computer, respective outputs from the photosensors in the array for first and second scan lines. The actual location is included in the first scan line. The processor retrieves, for use as at least part of useful image data for the first photosensor, the stored output of: the first photosensor for the second scan line for a Δy optical error, or a second photosensor for the first line for a Δx optical error.
Abstract:
A sensor assembly for a printer arranged to displace printed material along a path, including a sensor housing and a platen assembly. The sensor housing includes top surfaces and resilient elements fixed to the top surfaces, and houses light emitting elements. The platen assembly includes transparent material and a platen housing with a plurality of steps, and is arranged to engage the sensor housing and displace in a first direction along the sensor housing toward an end of the sensor housing such that the transparent material is aligned with the light emitting elements in a direction orthogonal to the axis. As the platen assembly displaces in the first direction, the plurality of resilient elements is arranged to engage the plurality of steps to urge the piece of transparent material into contact with the sensor housing with progressively greater force such that the transparent material is sealed against the sensor housing.
Abstract:
Image sensor module architecture provides flexible mounting of illuminators in an imaging apparatus with flexible fasteners. The architecture involves one or more LED-based illuminators that may be mounted adjustably to provide high intensity and uniform profile luminescence. The supporting imaging and electronic circuit components are quickly assembled and disassembled from the image sensor module by using a flexible multi-function clip having multiple segments for holding multiple objects together.
Abstract:
A sensor assembly for a printer arranged to displace printed material along a path, including a sensor housing and a platen assembly. The sensor housing includes top surfaces and resilient elements fixed to the top surfaces, and houses light emitting elements. The platen assembly includes transparent material and a platen housing with a plurality of steps, and is arranged to engage the sensor housing and displace in a first direction along the sensor housing toward an end of the sensor housing such that the transparent material is aligned with the light emitting elements in a direction orthogonal to the axis. As the platen assembly displaces in the first direction, the plurality of resilient elements is arranged to engage the plurality of steps to urge the piece of transparent material into contact with the sensor housing with progressively greater force such that the transparent material is sealed against the sensor housing.