摘要:
In one embodiment, an integrated circuit (IC) such as a programmable logic device includes a plurality of IC input terminals and an input buffer having a buffer input terminal and a buffer output terminal. A multiplexer is adapted to selectively couple an IC input terminal to the buffer input terminal or to couple the buffer output terminal to the buffer input terminal.
摘要:
One embodiment of the invention is an integrated circuit having: (i) an array of flash transistors formed on a substrate and arranged in one or more rows, each flash transistor having a control gate, wherein, in each row, the control gates are connected to a word line; and (ii) for each word line, at least one diode structure formed on the substrate and having first and second diodes, each diode having a cathode and an anode, wherein the word line is connected to the cathode of the first diode and to the anode of the second diode.
摘要:
Structures and techniques are provided for allowing one or more of the following actions to occur within a Complex Programmable Logic Device (CPLD): (1) Elective use of a fast, allocator-bypassing path (e.g., a fast 5-PT path) in combination with in-block simple or super-allocation; (2) Elective use of an OSM-bypassing path for signals that do not need pin-consistency; (3) Automatic re-routing of output enable signals that corresponding to output signals which are re-routed for pin-consistency purposes; (4) Global distribution of globally-usable output enable signals; (5) Elective use of two-stage steering to develop complex sum-of-clusters terms where fast path or simple allocation will not be sufficient; and (6) Use of unidirectional super-allocation with stage-2 wrap-around in designs having about 24 or less macrocell units per logic block. Techniques are provided for concentrating the development of complex function signals (e.g., ≦80PTs) within singular logic blocks so that the development of such complex function signals does not consume inter-block interconnect resources. One CPLD configuring method includes the machine-implemented steps of first identifying middle-complexity functions that are achievable by combined simple or super-allocation based development in one logic block and fast-path completion in the same or a second logic block; and configuring the CPLD to realize one or more of the functions identified in the first identification step by simple or super-allocation based development in one logic block and fast-path completion in the same or a second logic block.
摘要:
A phase locked loop comprises a phase locking circuit (16) which includes a phase/frequency detector (18) capable of outputting up and down signals to a charge pump (22) through separate signal paths (24, 26) and a phase lock detector (34) coupled to receive the up and down signals. The phase lock detector (34) determines the difference between the up and down signals from the phase/frequency detector (18) and in response generates a phase lock indicator signal PLL.sub.-- OUT.
摘要:
A high density programmable logic device (PLD) having sense amplifiers and OR gates configured to increase operation speed and reduce transistor count from previous circuits as well as to provide a selectable power down mode on a macrocell-by-macrocell basis. The sense amplifiers include a single cascode in the data path connecting a product term to the OR gates. The OR gates utilize a plurality of source follower transistors followed by pass gates to provide logic allocation enabling the sense amplifier outputs to be reduced from the 0.0 V-5.0 V CMOS rails to increase switching speed while reducing overall transistor count. Amplifying inverters normally provided in the sense amplifiers to provide the CMOS rail-to-rail switching and which would require complex feedback for providing power down on a macrocell-by-macrocell basis are moved forward into OR output circuits. Power down on a macrocell-by-macrocell basis is provided by selectively sizing the amplifying inverters in the OR output circuits.
摘要:
A gate clamping circuit is disclosed that includes a logic gate and a bias circuit arrangement. Through this clamping circuit the speed of operation of the circuit during both low to high and high-to-low transitions of the output signal are optimized while power consumption is minimized.
摘要:
A sense amplifier is provided that has improved speed from input to output, particularly during low-to-high transitions on the output and minimizes power consumption. By removing the product term window circuit from the critical node, the overall speed of the amplifier is maximized. In addition, circuitry is included to speed up low-to-high transitions, high-to-low transitions and provide increased noise immunity over temperature variations.
摘要:
A programmable logic device, in accordance with an embodiment, includes a first terminal; an input buffer having a buffer input terminal and a buffer output terminal; and a multiplexer coupled to the first terminal and to the input buffer, wherein the multiplexer is adapted to selectively couple either the first terminal to the buffer input terminal or couple the buffer output terminal to the buffer input terminal.
摘要:
Systems and methods are disclosed herein to provide improved non-volatile storage techniques for programmable logic devices. For example, in accordance with an embodiment of the present invention, a programmable logic device includes a plurality of logic blocks, a plurality of input/output blocks, and a volatile memory to store data within the programmable logic device, with configuration memory adapted to store first configuration data for configuration of the logic blocks, the input/output blocks, and the volatile memory of the programmable logic device. The programmable logic device further includes a non-volatile memory adapted to store data provided from the volatile memory.
摘要:
Systems and methods are disclosed herein to provide reconfiguration techniques for PLDs. For example, in accordance with an embodiment of the present invention, a programmable logic device includes logic blocks, input/output blocks, a volatile memory block, and configuration memory cells to store configuration data for configuration of the logic blocks, the input/output blocks, and the volatile memory block of the programmable logic device. The programmable logic device further includes circuit techniques for preventing loss of data stored in the volatile memory block due to a reconfiguration. Furthermore, for example, the programmable logic device may further prevent the loss of data stored in user registers or loss of input/output personality due to the reconfiguration.