摘要:
Field programmable gate arrays (FPGA's) may be structured in accordance with the disclosure to have a register-intensive architecture that provides, for each of plural function-spawning LookUp Tables (e.g. a 4-input, base LUT's) within a logic block, a plurality of in-block accessible registers. A register-feeding multiplexer means may be provided for allowing each of the plural registers to equivalently capture and store a result signal output by the corresponding, base LUT of the plural registers. Registerable, primary and secondary feedthroughs may be provided for each base LUT so that locally-acquired input signals of the LUT may be fed-through to the corresponding, in-block registers for register-recovery purposes without fully consuming (wasting) the lookup resources of the associated, base LUT. A multi-stage, input switch matrix (ISM) may be further provided for acquiring and routing input signals from adjacent, block-interconnect lines (AIL's) and/or block-intra-connect lines (e.g., FB's) to the base LUT's and/or their respective, registerable feedthroughs. Techniques are disclosed for utilizing the many in-block registers and/or the registerable feedthroughs and/or the multi-stage ISM's for efficiently implementing various circuit designs by appropriately configuring such register-intensive FPGA's.
摘要:
An input/output buffer is provided which can be used to make an integrated circuit selectively compatible with one of a number of interface types, such as PCI, GTL, PECL, ECL and SSTI. The input buffer portion includes a first pair of CMOS transistors for driving the output (OUT) between the VSS and VDD rails similar to CMOS logic. Switching circuitry includes transistors which drive gates of the CMOS transistors to set the output (OUT) with a current level and a voltage level depending on a desired output drive current and voltage.
摘要:
An input/output buffer is provided with an output buffer portion which can be used to make an integrated circuit selectively compatible with one of a number of interface types, such as PCI, GTL, PECL, ECL and SSTI. An output buffer portion has an input for receiving an output signal node (D) where components on the integrated circuit provide an output signal for connecting to external circuits at an output pad (PAD). The input buffer includes switching circuitry driving the gates of multiple CMOS buffer transistors to provide sufficient current for rapid switching, and limit current after switching to prepare for a subsequent output transition. The switching circuitry includes components to prevent damage to low voltage transistors used in the output buffer should the output pad (PAD) voltage exceed VDD, or should charge buildup occur on the common well of PMOS transistors used in the output buffer exceed VDD.
摘要:
An input/output buffer is provided with an output buffer portion which can be used to make an integrated circuit selectively compatible with one of a number of interface types, such as PCI, GTL, PECL, ECL and SSTI. An output buffer portion has an input for receiving an output signal node (D) where components on the integrated circuit provide an output signal for connecting to external circuits at an output pad (PAD). The signal from the PAD is further fed back through the input buffer portion which programmably set to operate in a PCI, PECL or GTL mode to control a node (INB). The node (INB) is used to control power switches driving the gates of CMOS buffer transistors to provide sufficient current for rapid switching, and limit current after switching to prepare for a subsequent output transition. Pull-up and pull-down reference circuits provide references VRFPU, VRFPPU, VRFPD and VRFPPD to control the current of the output during transition of the output, while maintaining the output voltage level at a desired voltage with minimal current level after transition.
摘要:
A field-programmable gate array device (FPGA) having plural rows and columns of logic function units (VGB's) further includes a plurality of embedded memory blocks, where each memory block is embedded in a corresponding row of logic function units. Each embedded memory block has an address port for capturing received address signals and a controls port for capturing supplied control signals. Interconnect resources are provided including a Memory Controls-conveying Interconnect Channel (MCIC) for conveying shared address and control signals to plural ones of the memory blocks on a broadcast or narrowcast basis.
摘要:
A power converter includes an opamp (FIG. 5) with CMOS transistors made using 2.5 volt process technology which tolerates a maximum gate voltage of 2.7 volts. The opamp is driven by a pin supply voltage (NV3EXT) with a maximum value of 3.6 volts. The connection of the transistors of the opamp (FIG. 5) provides a maximum gate to source, and gate to drain voltage on each transistor which is less than 2.7 volts when NV3EXT is at 3.6 volts. Further, the output (OUT) of the opamp (FIG. 5) is referenced to ground, rather than NV3EXT to prevent fluctuations in the input voltage offset relative to NV3EXT, and minimize variations in the output voltage margin of the power converter.
摘要:
A voltage switch is provided made up of 2.5 volt process transistors which tolerate a maximum gate to source, gate to drain, or drain to source voltage of 2.7 volts. The voltage switch transistors are arranged to switch between a voltage, such as 2.5 volts, and a much higher voltage, such as 4.5 volts. In one embodiment (350), the voltage switch includes an input provided to the source of an NMOS cascode connected transistor (360). An inverter (354) connects the source of the NMOS cascode (360) to the source of another NMOS cascode (361). A cascode transistor is defined as being connected so that it is turned on and off by varying source voltage with the gate voltage fixed, rather than varying gate voltage. Gates of the cascodes (360, 361) are connected to Vcc (2.5 volts). PMOS cascode transistors (362) and (363) connect the drains of respective cascode transistors (360) and (361) to PMOS transistors (364) and (365). The PMOS transistors (364) and (365) have sources connected to 4.5 volts. A PMOS transistor (366) has a gate tied to the drain of cascode (361) and provides Vcc to the switch output (n10). A PMOS transistor (368) has a gate tied to the gate of transistor 365 and supplies 4.5 volts to the switch output (n10). In operation, the switch (350) functions to selectively transition its output (n10) between Vcc and 4.5 volts without applying greater than 2.7 volts from the gate to source, gate to drain, or source to drain of any of its transistors.
摘要:
A high voltage detector circuit (FIG. 2) maintains a voltage (V.sub.2) on a reference line driven by a charge pump by turning the charge pump on with a signal (PUMPON) when the reference line voltage (V.sub.2) drops below a reference voltage (V.sub.1) plus a CMOS transistor threshold voltage. The high voltage detector is further configured to use transistors which have a maximum gate to drain, or gate to source voltage which exceeds the pin supply voltage to the chip. The high voltage detector includes comparators made up of a series of current mirrors driven by weak current sources enabling the circuit to use a minimum amount of power.
摘要:
A Variable Grain Architecture (VGA) is used for synthesizing from primitive building elements (CBE's) an appropriate amount of dynamic multiplexing capability for each given task. Unused ones of such Configurable Building Elements (CBE's) are reconfigured to carry out further logic functions in place of the dynamic multiplexing functions. Each CBE may be programmably configured to provide no more than a 2-to-1 dynamic multiplexer (2:1 DyMUX). The dynamically-selectable output of such a synthesized 2:1 DyMUX may then be output onto a shared interconnect line. Pairs of CBE's may be synthetically combined to efficiently define 4:1 DyMUX's with each such 4:1 multiplexer occupying a Configurable Building Block (CBB) structure. Pairs of CBB's may be synthetically combined to efficiently define 8:1 DyMUX's with each such synthesized 8:1 multiplexer occupying a vertically or horizontally-extending leg portion of an L-shaped, VGB structure (Variable Grain Block). The so-configured leg portion of the VGB may then output the signal selected by its 8:1 DyMUX onto a shared interconnect line that is drivable by the VGB leg. Pairs or quartets of VGB's may be synthetically combined to efficiently define higher order, N:1 DyMUX's.
摘要:
A serial scan chain extends into an array of SRAM cells within a multi-ported memory system for allowing serial introduction of write data into the SRAM cells and serial read-back of the data. Initial data may be pre-loaded into the SRAM cells by way of the serial scan chain before being read parallel-wise in response to read requests submitted through any of multiple, parallel data access ports of the system.