Abstract:
A method for manufacturing a heat pipe. Activated particles or particle clusters are formed. The activated particles or particle clusters are contacted with a working fluid in a non-oxidizing environment to form a chemisorbed layer of the working fluid thereon to generate chemisorbed working fluid surfaced activated hydrophilic particles or activated hydrophilic particle clusters which provide a solid-liquid contact angle to working fluid when subsequently added of
Abstract:
An expandable heat rejection system for radiating heat generated by a source of heat on a spacecraft or like vehicle is described and comprises a fluid heat exchange medium in operative heat exchange contact with the source for absorbing heat by evaporation of the liquid phase of the medium, a thin flexible wall structure having an inlet and an outlet and defining a volume expandable and collapsible between preselected limits and defining an inner condensation surface and an outer heat radiating surface, a multiplicity of capillary grooves on the condensation surface for promoting condensation of vaporous medium and for facilitating flow of condensate along the condensation surface toward the outlet, and a pump for circulating the medium through the system.
Abstract:
A method for manufacturing a heat pipe. Activated particles or particle clusters are formed. The activated particles or particle clusters are contacted with a working fluid in a non-oxidizing environment to form a chemisorbed layer of the working fluid thereon to generate chemisorbed working fluid surfaced activated hydrophilic particles or activated hydrophilic particle clusters which provide a solid-liquid contact angle to working fluid when subsequently added of
Abstract:
A system for radiating heat generated by a source of heat aboard a spacecraft or the like is described which comprises a pair of spaced heat pipes and a pair of spaced wall members having inner condensation surfaces and outer heat radiating surfaces bonded to the heat pipes and defining a vapor chamber, a rewet artery of capillary wicking material disposed within the vapor chamber between the heat pipes and extending substantially lengthwise of the vapor chamber, a source of expendable liquid heat exchange medium operatively connected to the rewet artery for maintaining an inventory of heat exchange medium within the vapor chamber, and a pressure relief valve on the vapor chamber for venting vapor overpressure. The condensation surfaces of the wall members include a multiplicity of capillary grooves extending between the rewet artery and the heat pipes to promote vapor condensation, to facilitate flow of condensate toward the heat pipes, and otherwise to maintain a liquid film inventory near the heat radiating surfaces of the wall members.
Abstract:
A high thermal capacitance multilayer thermal insulation structure is described, which is of particular utility for thermal protection against exposure to alternate high and low radiant heat flux levels, and which comprises a laminate of alternate metal foil or metallized plastic foil layers and layers of material which are characterized by phase change upon the absorption of heat, the foil layers providing high reflectance and reradiation of the heat flux, and the phase change layers providing for absorption and storage of heat during periods of high heat flux for reradiation during periods of low heat flux.
Abstract:
A heat pipe includes a sealed thermally conductive casing having a length that has a first end for coupling to a heat source to be cooled and a second end for coupling to a heat sink opposite the first end. The casing has an inside surface that defines a thermal control volume above. The thermal control volume includes (i) a plurality of hydrophilic particles or clusters of hydrophilic particles in a size range from nano size to micron size attached as a hydrophilic film to the inside surface or to a wick on the inside surface, wherein the plurality of hydrophilic particles occupy only a portion of an area of the inside surface or an internal pore space of the wick or a surface area of the wick, (ii) a vapor cavity above the hydrophilic film or the wick, and (iii) a heat transfer working fluid contained as a liquid on the hydrophilic film or the wick, and as a vapor in the vapor cavity. The plurality of hydrophilic particles or clusters of hydrophilic particles provide a solid-liquid contact angle for the working fluid when in a liquid state of
Abstract:
An expandable heat rejection system for radiating heat generated by a source of heat on a spacecraft or like vehicle is described and comprises a fluid heat exchange medium in operative heat exchange contact with the source for absorbing heat by evaporation of the liquid phase of the medium, a thin flexible wall structure having an inlet and an outlet and defining a volume expandable and collapsible between preselected limits and defining an inner condensation surface and an outer heat radiating surface, a multiplicity of capillary grooves on the condensation surface for promoting condensation of vaporous medium and for facilitating flow of condensate along the condensation surface toward the outlet, and a pump for circulating the medium through the system.
Abstract:
A thermal storage apparatus for use with space-based burst power supplies. Lithium hydride is encapsulated within spherical hollow capsules. Each capsule is made of a three layer hollow shell. The inner layer of each shell is molybdemum, the middle layer silicon carbide, and the outer layer molybedum. The lithium hydride occupies only about sixty percent of the interior volume of each capsule at ambient temperatures to allow for thermal expansion. The outer diameter of each capsule is 3 cm. The thickness of the layers is 0.1 mm for the inner and outer layer, and 0.3-0.5 mm for the middle layer. The capsules are arranged in a packed array for use in heat storage. A heat transfer working fluid, such as lithium, sodium or potassium, transfers heat to and from the packed array.