Abstract:
The invention relates to a new method and system for optimizing the efficiency of an automotive catalytic converter by adjusting the engine air/fuel ratio based on estimates of the actual amount of oxidants stored in the catalyst. The oxidant storage capacity of the catalyst is adjusted by controlling engine spark in response to an estimate of a current amount of oxidants stored in the catalyst and an estimate of the total available oxidant storage capacity of the catalyst. To maintain engine speed in spite of adjustments to the engine spark, the engine air mass is also adjusted.
Abstract:
The invention relates to a new method and system for optimizing the efficiency of an automotive catalytic converter by adjusting the engine air/fuel ratio based on estimates of the actual amount of oxidants stored in the catalyst. To do so, the invented system estimates an amount of oxidants stored in the catalyst. The amount of oxidants stored is estimated by determining an amount of oxidants that are available for storage by the catalyst or that are needed to oxidize hydrocarbons being produced by the engine. Based thereon, a change in oxidant storage in the catalyst is calculated. The estimate of the amount of oxidants that are available for storage by the catalyst or that are needed to oxidize hydrocarbons is adjusted based on a feedback parameter.
Abstract:
A method for rapidly heating an emission control device in an engine exhaust uses excess air added to the exhaust via an air introduction device. After an engine cold start, the engine is operated to raise exhaust manifold temperature to a first predetermined value by operating the engine with a lean air-fuel ratio and retarded ignition timing. Once the exhaust manifold reaches the predetermined temperature value, the engine is switched to operate rich and air is added via the air introduction device. The added air and rich exhaust gas burn in the exhaust, thereby generating heat and raising catalyst temperature even more rapidly. The rich operation and excess air are continued until either engine airflow increases beyond a pre-selected value, or the emission control device reaches a desired temperature value. After the emission control device reaches the desired temperature, the engine is operated substantially around stoichiometry. Further, a method is described for adaptively learning pump airflow using feedback from an exhaust gas oxygen sensor.
Abstract:
The invention relates to a new method and system for optimizing the efficiency of an automotive catalytic converter by adjusting the engine air/fuel ratio based on estimates of the actual amount of oxidants stored in the catalyst. An available oxidant storage capacity of the catalyst is determined by establishing an oxidant set point location, i.e., a location in the catalyst about which the system controls the oxidant storage. The oxidant set point is established based on the temperatures of the different potential set point locations and the levels of deterioration of the different potential set point locations, as well as the oxidant storage capacity of the emission control device system.
Abstract:
A system and method to predict engine air amount for an internal combustion engine is described. Included is a method to predict a change in engine air amount based on engine position. This method especially suited to engine starts, where engine air amount is difficult to predict due to low engine speed and limited sensor information. The system and method provides the prediction of engine air amount without extensive models or calibration. Fuel is supplied based on the predicted engine air amount.
Abstract:
A system and method to predict engine air amount for an internal combustion engine is described. Included is a method to predict a change in engine air amount based on a difference in engine speed. This method is especially suited to engine starts, where engine air amount is difficult to predict due to low engine speed and limited sensor information. The system and method provides the prediction of engine air amount without extensive models or calibration. Fuel is supplied based on the predicted engine air amount.
Abstract:
The invention relates to a new method and system for optimizing the efficiency of an automotive catalytic converter. The claimed invention comprises adjusting an air/fuel ratio in the cylinders of an internal combustion engine to maintain a desired level of oxidants in the catalytic converter. At various times, the actual amount of oxidants stored in the catalytic converter is determined. The actual oxidant amount is compared to a target amount of oxidants to be stored in the catalytic converter. The air/fuel ratio in the cylinders is adjusted based on the magnitude of the difference between the actual oxidant amount and the target oxidant amount to prevent NOx and hydrocarbon breakthrough.
Abstract:
The invention relates to a new method and system for optimizing the efficiency of an automotive catalytic converter by adjusting the engine air/fuel ratio based on estimates of the actual amount of oxidants stored in the catalyst. The oxidant storage capacity of the catalyst is adjusted by controlling engine spark in response to an estimate of a current amount of oxidants stored in the catalyst and an estimate of the total available oxidant storage capacity of the catalyst. To maintain engine speed in spite of adjustments to the engine spark, the engine air mass is also adjusted.
Abstract:
The invention relates to a new method and system for optimizing the efficiency of an automotive catalytic converter by adjusting the engine air/fuel ratio based on estimates of the actual amount of oxidants stored in the catalyst. An available oxidant storage capacity of the catalyst is determined by establishing an oxidant set point location, i.e., a location in the catalyst about which the system controls the oxidant storage. The oxidant set point is established based on the temperatures of the different potential set point locations and the levels of deterioration of the different potential set point locations, as well as the oxidant storage capacity of the emission control device system.
Abstract:
The invention relates to a new method and system for optimizing the efficiency of an automotive catalytic converter by adjusting the engine air/fuel ratio based on estimates of the actual amount of oxidants stored in the catalyst. The oxidant storage capacity of the catalyst is adjusted by controlling engine spark in response to an estimate of a current amount of oxidants stored in the catalyst and an estimate of the total available oxidant storage capacity of the catalyst. To maintain engine speed in spite of adjustments to the engine spark, the engine air mass is also adjusted.