摘要:
A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising electrochemically active precursor particles dispersed in a carrying medium is provided to a processing chamber and thermally treated using a combustible gas mixture also provided to the chamber. The precursor is converted to nanocrystals by the thermal energy, and the nanocrystals are deposited on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
摘要:
Apparatus and methods for conditioning a polishing pad include an arm adapted to support a conditioning disk; a drive mechanism coupled to the arm; and a flexible coupling between the drive mechanism and the conditioning disk adapted to allow the conditioning disk to tilt while transmitting rotary motion from the drive mechanism to the conditioning disk. Numerous other aspects are disclosed.
摘要:
Methods of and systems for polishing an edge of a substrate are provided. The invention includes a substrate rotation driver adapted to rotate the edge of a substrate against a polishing film; and a first sensor coupled to the rotation driver adapted to detect one of an energy and torque exerted by the substrate rotation driver as it rotates the substrate against the polishing film. Numerous other aspects are provided.
摘要:
Embodiments of a pad assembly for processing a substrate are provided. The pad assembly includes a processing layer having a working surface adapted to process a substrate, a lower layer coupled to and disposed below the processing layer, and an electrode having an upper surface disposed above the lower layer and below the working surface of the processing layer. The upper surface of the electrode is at least partially exposed to the working surface to provide an electrolyte pathway between the upper surface of the electrode and the working surface.
摘要:
An apparatus and method for securing and electrically contacting a substrate on a non-production surface of the substrate. The apparatus includes a substrate holder assembly having a substrate engaging surface formed thereon, the substrate engaging surface being configured to engage a substrate on the non-production surface. The apparatus further includes an electrical contact device positioned on the substrate engaging surface, the electrical contact device including a plurality of radially spaced electrically conductive members configured to electrically communicate with the non-production surface of the substrate positioned on the substrate engaging surface. The method includes depositing a conductive seed layer on a production surface of the substrate, and depositing a backside conductive layer on a portion of the non-production side of the substrate, the backside conductive layer extending around a bevel of the substrate to electrically communicate with the seed layer. The method further includes securing the substrate in a chuck configured to engage the non-production surface of the substrate, contacting the backside conductive layer with an electrical cathode contact on the non-production side of the substrate, and plating over the conductive seed layer via application of an electrolyte to the production surface of the substrate and applying an electrical bias to the electrical cathode contact and an anode in communication with the electrolyte.
摘要:
An apparatus for and method of rinsing one side of a two-sided substrate and removing unwanted material from the substrate's edge and/or backside. One embodiment of the method is directed toward rinsing and cleaning a substrate having a front side upon which integrated circuits are to be formed and a backside. This embodiment includes dropping the substrate front side down onto a pool of rinsing liquid in a manner such that the front side of the substrate is in contact with the solution while the substrate is held in suspension by the surface tension of the solution liquid thereby preventing the backside of the substrate from sinking under an upper surface of the pool. Next, while the substrate is in suspension in said rinsing liquid, the substrate is secured by its edge with a first set of fingers and in some embodiments the substrate is subsequently spun. In another embodiment, a method of forming a copper layer on a front side of a substrate is disclosed. The method includes plating the copper layer over the front side of the substrate in a plating device and then transferring the substrate from the plating device to rinsing and cleaning station. At the rinsing and cleaning station, the substrate is dropped front side down onto a pool of rinsing liquid so that the surface tension of the liquid holds the substrate in suspension thereby preventing the backside of said substrate from sinking under an upper surface of the pool and then, while the substrate is suspended in the pool, it is secured with a first set of fingers.
摘要:
An apparatus and associated method that removes electrolyte solution from a substrate, the apparatus comprises a thrust plate and a substrate extension unit. The thrust plate at least partially defines a spin recess. The substrate extension unit can be displaced between a retracted position and an extended position relative to the spin recess. The substrate extension unit is disposed within the spin recess when positioned in the retracted position. The substrate extension unit at least partially extends from within the spin recess when positioned in the extended position. The substrate is processed by immersing at least a portion of the substrate in a wet solution. The substrate is removed from the wet solution. The substrate extension unit extends into its extended position, and the substrate is spun. Extending the substrate extension unit limits the formation of fluid traps within the substrate holder assembly or between the substrate and the substrate holder assembly.
摘要:
A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising precursor particles dispersed in a carrying medium is activated in an activation chamber by application of an electric field to ionize at least a portion of the precursor mixture. The activated precursor mixture is then mixed with a combustible gas mixture to add thermal energy to the precursor particles, converting them to nanocrystals, which deposit on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
摘要:
A stable platform supports a cell, the stable platform comprises a lower mainframe, an upper mainframe, and a dampener system. The upper mainframe includes a plurality of recesses. Each recess is configured to receive a cell. The dampener system connects the lower mainframe to the upper mainframe. In one embodiment, the dampener system comprises a dampener element, such as sand, to dampen vibrations between the lower mainframe and the lower mainframe.
摘要:
A method of planarizing a metal conductive layer on a substrate is provided. In one embodiment, a substrate having a metal conductive layer disposed on a top surface of the substrate is provided on a substrate support. The substrate support is rotated and the top surface of the substrate is contacted with a liquid etching composition. The metal conductive layer is then exposed to an etchant gas in order to planarize the top surface of the metal conductive layer. Also provided is an apparatus for etching a metal conductive layer on a substrate. The apparatus comprises a container, a substrate support disposed in the container, a rotation actuator attached to the substrate support, and a fluid delivery assembly disposed in the container.