摘要:
The present inventions relate to methods and apparatus for detecting and mechanically removing defects and a surrounding portion of the photovoltaic layer and the substrate in a thin film solar cell such as a Group IBIIIAVIA compound thin film solar cell to improve its efficiency.
摘要:
The embodiments of the present invention provide a defect detection process and apparatus to detect defects in solar cell structures. During the process, an input signal from a signal source is applied to a top surface of a transparent conductive layer of a solar cell structure. In response to the input signal, an output signal is generated from a predetermined area of the top surface and detected by a defect detector. The output signal carrying the defect position information is transmitted to a computer and registered in a database. With the position information, an injector is driven to the defect location to apply an insulator to passivate the defect. A finger pattern layer may be formed over the predetermined area after completing the defect detection and passivation processes.
摘要:
The present inventions relate to methods and apparatus for detecting and mechanically removing defects and a surrounding portion of the photovoltaic layer and the substrate in a thin film solar cell such as a Group IBIIIAVIA compound thin film solar cell to improve its efficiency.
摘要:
Systems and methods for reducing alteration of a specimen during by charged particle based and other measurements systems are provided. One system configured to reduce alteration of a specimen during analysis includes a vacuum chamber in which the specimen is disposed during the analysis and an element disposed within the vacuum chamber. A surface of the element is cooled such that molecules in the vacuum chamber are adsorbed onto the surface and cannot cause alteration of a characteristic of the specimen during the analysis. One system configured to analyze a specimen includes an analysis subsystem configured to analyze the specimen while the specimen is disposed in a vacuum chamber and an element disposed within the vacuum chamber. A surface of the element is cooled such that molecules in the vacuum chamber are adsorbed onto the surface and cannot cause alteration of a characteristic of the specimen during the analysis.
摘要:
Various systems configured to reduce distortion of a resist during a metrology process are provided. The systems include an electron beam metrology tool configured to measure one or more characteristics of one or more resist features formed on a specimen. The electron beam metrology tool may be configured as a scanning electron microscope. The resist may be designed for exposure at a wavelength of about 193 nm. One system includes a cooling subsystem configured to alter a temperature of the specimen during measurements by the tool such that the resist feature(s) are not substantially distorted during the measurements. Another system includes a drying subsystem that is configured to reduce moisture proximate the specimen during measurements by the electron beam metrology tool such that the resist feature(s) are not substantially distorted during the measurements. An additional system may include both the cooling subsystem and the drying subsystem.
摘要:
Methods and systems for preparing a substrate for analysis are provided. One method includes removing a portion of a copper structure on the substrate using an etch chemistry in combination with an electron beam. The etch chemistry is substantially inert with respect to the copper structure except in the presence of the electron beam. Other methods involve forming masking layers on a substrate that will protect the substrate during etching. For example, one method includes exposing a first portion of the substrate to an electron beam. A second portion of the substrate not exposed to the electron beam includes a copper structure. The method also includes exposing the substrate to a fluorine containing chemical. The fluorine containing chemical bonds to the first portion but not the second portion to form a fluorine containing layer on the first portion.
摘要:
The embodiments of the present invention provide a defect detection process and apparatus to detect defects in solar cell structures. During the process, an input signal from a signal source is applied to a top surface of a transparent conductive layer of a solar cell structure. In response to the input signal, an output signal is generated from a predetermined area of the top surface and detected by a defect detector. The output signal carrying the defect position information is transmitted to a computer and registered in a database. With the position information, an injector is driven to the defect location to apply an insulator to passivate the defect. A finger pattern layer may be formed over the predetermined area after completing the defect detection and passivation processes.