Abstract:
There is provided a distribution material for personal care products which is a fabric which wicks artificial menses according to a horizontal wicking test a distance of about 1 inch in less than about 1.5 minutes. Materials meeting this performance criteria generally have a pore size distribution with a high percentage (usually more than 50 percent) of pore diameters between about 80 and 400 microns and a density below about 0.15 g/cc. There is also provided a personal care product system having a distribution/retention layer and a pad shaping layer wherein each layer has a stain length ratio of 0.5 or less and the distribution/retention layer has a saturation profile of 4 or less.
Abstract translation:提供了一种用于个人护理产品的分配材料,其是在小于约1.5分钟内根据水平芯吸测试将约1英寸的距离照射人造月经的织物。 满足该性能标准的材料通常具有在大约80-400微米之间孔径的高百分比(通常大于50%)和低于约0.15g / cm 2的密度的孔径分布。还提供个人护理产品系统 具有分布/保持层和垫成形层,其中每层的染色长度比为0.5或更小,并且分布/保留层具有4或更小的饱和分布。
Abstract:
There is provided an intake/distribution layer for personal care products which is a co-apertured distribution layer and a transfer delay layer between them. The co-apertured distribution and transfer delay layer can serve to store liquid and release it to an absorbent core in a personal care product at a rate at which the core can absorb. This ability to accept irregular and large flow rates makes the layer of this invention particularly well suited for “gush” management. The distribution layer is preferably an airlaid fabric and the transfer delay layer is preferably a spunbond fabric and they are co-apertured using a pin density of preferably about 2.5 pins/cm2.
Abstract translation:提供了一种用于个人护理产品的进气/分配层,它是共同分布层和它们之间的传递延迟层。 共孔分布和转移延迟层可以用于储存液体并以核心可以吸收的速率将其释放到个人护理产品中的吸收芯上。 这种接受不规则和大流量的能力使得本发明的层特别适合于“喷射”管理。 分布层优选为气流成网织物,并且传输延迟层优选为纺粘织物,并且它们使用优选约2.5针/ cm 2的针密度共同孔。
Abstract:
An elastomeric film includes a first layer co-extruded with a second layer. The first layer includes a single-site catalyzed ethylene-alpha olefin copolymer having a density of about 0.860 to about 0.900 grams per centimeter. The second layer includes a styrene copolymer selected from styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-ethylene/butylene-styrene, styrene-ethylene/propylene-styrene, or styrene-(ethylene/propylene)-styrene-(ethylene/propylene). The first layer may optionally include filler particles. An extensible laminate including the elastomeric film is also disclosed.
Abstract:
Stretchable film laminates including a layer of elastomeric openwork, such as a plurality of elastic strands or an elastomeric mesh structure. The stretchable film laminates may include a film layer bonded to the layer of elastomeric openwork, with the film layer having cross-directional stretch and the laminate having a multi-phase stretchability profile. The stretchable film laminates may be made by extruding a film from a die, stretching the film, forming and stretching a layer of elastomeric openwork, conveying the stretched elastomeric openwork onto the film while the film is stretched, and passing the film and the elastomeric openwork through a nip. The invention also includes a machine capable of producing machine-direction, cross-direction, and biaxial stretch materials. The machine includes at least one extruder, at least one filament die and at least one film die both attached to the extruder(s), and at least one nip downstream of the extruder(s).
Abstract:
There is provided an absorbent system that not only takes in fluid, but then transfers that fluid further beneath the first composite. This is achieved in this invention through paired permeability, capillarity, and void volume of the first and second composites. The invention is an absorbent system composed of at least two absorbent composites that have complementary structural/surface energy characteristics. Such an absorbent system has a first absorbent Composite A which has a first permeability, a first capillarity, and a first void volume and at least one second absorbent Composite B which has a second capillarity and a second porosity multiplied by second thickness. The first absorbent Composite A is in liquid communication or contact with at least one second absorbent Composite B, such that the first absorbent Composite A, and the second absorbent Composite B have a fluid partitioning amount in Composite A, a third triple intake time (IT3) and a rewet value.
Abstract:
An extensible laminate having improved set and hysteresis is disclosed. The extensible laminate includes an extensible nonwoven web laminated to an elastomeric sheet that have been mechanically stretched in the cross direction after lamination. A method for making the extensible laminate includes laminating an extensible nonwoven web to an elastomeric sheet to form a laminate and mechanically stretching the laminate in a cross direction by at least about 50 percent.
Abstract:
There is provided a resilient, three dimensional material having fibrous texture and appearance and capable of fluid handling. It consists of a top surface and a bottom surface wherein fiber-like elements typically extend from one surface to the other forming flat to undulating surfaces characterized by a multiplicity of interconnected fluid passageways. Deformed, discontinuous film-like or encapsulated regions connect fiber-like elements and stabilize the material. The material of this invention is unique based on the three principle characteristics which are communicated in this application: 1) ff(ψ)
Abstract:
There is provided an intake/retention/transfer material for personal care products like feminine hygiene products, which is a heterogeneous composite containing between 5 and 25 weight percent of a superabsorbent or gelling material and having a density less than 0.17 g/cc. A more particular embodiment contains less than 20 weight percent and a still more particular embodiment contains 15 weight percent or less of a superabsorbent or gelling material. Also provided are absorbent articles which contain the class of intake/transfer materials mentioned above along with additional absorbent layers such that the absorption of a menses simulant provides fluid partitioning of less than 72% of fluid in the intake/transfer/retention composite. Additionally said composite should have retention capacity values greater than 2.7 g/g.
Abstract:
A personal care absorbent article having a fluid intake/distribution layer, a fluid transfer delay layer disposed beneath said fluid intake/distribution layer, said fluid transfer delay layer enabling the transfer of fluid from the fluid intake/distribution layer(s) to a pad layer disposed beneath the fluid transfer delay layer while still allowing fluid distribution by the fluid intake/distribution layer along the machine direction of the article resulting in saturation levels of less than or equal to about 0.86 g/g/in of fluid in the intake/distribution layer(s) and/or essentially equal to or greater than 0.06 g/g/in. of fluid in the pad layer.
Abstract translation:一种具有流体进入/分布层的个人护理吸收制品,设置在所述流体进入/分配层下方的流体传递延迟层,所述流体传递延迟层使得能够将流体从流体进入/分布层传送到垫 层,其设置在流体传递延迟层之下,同时仍然允许流体进入/分布层沿着制品的机器方向分配流体,导致进气/流体流体中的流体的饱和水平小于或等于约0.86g / g / 分布层和/或基本上等于或大于0.06g / g / in。 的垫层中的流体。
Abstract:
There is provided a fluid management material for personal care products which distributes artificial menses according to the gush/distribution test taught herein such that it has a distribution ratio of at least about 0.06. Its preferred that the fluid management material be part of an absorbent materials system having a first fibrous layer, a middle layer adjacent the first layer having hydrophilic oriented surface fibers, and a second fibrous layer adjacent the middle layer. In a personal care product configuration the oriented surface fibers result in a distribution ratio of at least 0.06 where the distribution ratio is a ratio of average of the mass of two end zones of a product divided by the mass of the center zone.