Abstract:
There is provided an intake/retention/transfer material for personal care products like feminine hygiene products, which is a heterogeneous composite containing between 5 and 25 weight percent of a superabsorbent or gelling material and having a density less than 0.17 g/cc. A more particular embodiment contains less than 20 weight percent and a still more particular embodiment contains 15 weight percent or less of a superabsorbent or gelling material. Also provided are absorbent articles which contain the class of intake/transfer materials mentioned above along with additional absorbent layers such that the absorption of a menses simulant provides fluid partitioning of less than 72% of fluid in the intake/transfer/retention composite. Additionally said composite should have retention capacity values greater than 2.7 g/g.
Abstract:
An absorbent article includes a vapor permeable backsheet, a liquid permeable topsheet positioned in facing relation with the backsheet; and an absorbent body located between the backsheet and the topsheet. The absorbent body may include multiple zones of high air permeability or may include materials which provide improved air exchange after being wetted. The absorbent article may also include a ventilation layer between the absorbent body and the backsheet and a surge management layer between the absorbent body and the topsheet. The article exhibits improved air exchange within the article during use. As a result, the article exhibits substantially reduced levels of hydration of the wearer's skin when in use which renders the skin less susceptible to the viability of microorganisms.
Abstract:
A soft, flexible, low-density, open-cell, thermoplastic, absorbent foam formed from a foam polymer formula including a balanced amount of a plasticizing agent and a surfactant in combination with a base resin. Thermoplastic elastomers can be added to the foam polymer formula to improve softness, flexibility, elasticity, and resiliency of the resulting foam. The surfactant may be either a single surfactant or a multi-surfactant system. The foam possesses a number of qualities, such as softness and strength, which render the foam particularly suitable for use in a variety of personal care products, medical products, and the like.
Abstract:
An absorbent fiber includes a cellulose fiber that has been modified via chemical modification, where the chemical modification is selected from carboxymethylation, sulfonation, sulfation or phosphonation. The absorbent fiber can be substantially water-insoluble and water-swellable. The absorbent fiber exhibits a Centrifuge Retention Capacity after four hours of between 1.4 and 8 grams per gram and an absorption rate between 0.0001 and 0.01 sec−1. Absorbent articles having a topsheet, a backsheet and an absorbent core can also include the absorbent fiber.
Abstract:
A soft, flexible, low-density, open-cell, thermoplastic, absorbent foam formed from a foam polymer formula including a balanced amount of a plasticizing agent and a surfactant in combination with a base resin. Thermoplastic elastomers can be added to the foam polymer formula to improve softness, flexibility, elasticity, and resiliency of the resulting foam. The surfactant may be either a single surfactant or a multi-surfactant system. The foam possesses a number of qualities, such as softness and strength, which render the foam particularly suitable for use in a variety of personal care products, medical products, and the like.
Abstract:
An absorbent article includes a vapor permeable backsheet, a liquid permeable topsheet positioned in facing relation with the backsheet; and an absorbent body located between the backsheet and the topsheet. The absorbent body may include multiple zones of high air permeability or may include materials which provide improved air exchange after being wetted. The absorbent article may also include a ventilation layer between the absorbent body and the backsheet and a surge management layer between the absorbent body and the topsheet. The article exhibits improved air exchange within the article during use. As a result, the article exhibits substantially reduced levels of hydration of the wearer's skin when in use which renders the skin less susceptible to the viability of microorganisms.